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Abstract

This paper extends econometric tests developed in the market efficiency literature to
firms subject to corporate default risk by exploring the information contained in credit
default swaps (CDS) at-market spreads. Using a large dataset of S&P 500 firms and
an extended time frame (2008–2020), we find that firm-level stock market efficiency
improves with financial leverage. By contrast, results for the aggregate market show a
distinct lack of efficiency for various U.S. stock indices. Multiple robustness tests con-
firm that an active CDS market for single names improves the informational efficiency
of stock prices and helps them align with their fundamentals.
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1. Introduction

A substantial body of empirical evidence has emerged over the last decades suggesting a

lack of efficiency in aggregate stock market returns. At the same time, returns on individual

firms seem to be more closely tied to changes in fundamentals such as earnings and divi-

dends. This distinction led Samuelson (1998) to hypothesize that stock markets may be more

efficient at the firm level (micro efficiency) than at the aggregate level (macro inefficiency), a

proposition that has found recent support from a theoretical perspective (e.g., Gârleanu and

Pedersen, 2022; Glasserman and Mamaysky, 2023). Meanwhile, the emergence of an active

market for single-name credit default swaps (CDS) has significantly expanded the available

firm-specific information on default risk. The prominent role of CDS in information trans-

mission to the stock market prompts us to investigate if an active CDS market improves the

informational efficiency of individual stock prices.

The linkage between single-name CDS and stocks has been extensively documented in

the literature. Recent studies show that the CDS market contains unique, firm-specific

information that is not captured by the prices of other related securities, such as stocks and

bonds. At the most fundamental level, the CDS market reflects corporate disclosure quality

through accounting transparency (e.g., Bhat, Callen, and Segal, 2016) and asset reliability

(e.g., Arora, Richardson, and Tuna, 2014). The CDS market is also faster than credit rating

events to reflect changes in firm creditworthiness (e.g., Chava, Ganduri, and Ornthanalai,

2019). In addition, the CDS market provides important information to equity analysts that

is not aggregated into stock prices and useful to improve the accuracy of their forecasts

(e.g., Batta, Qiu, and Yu, 2016; Kim et al., 2018; Zhao et al., 2022). Finally, because of

the asymmetric payoff of CDS contracts, an active CDS market significantly reduces the

likelihood of future stock price crashes by facilitating the incorporation of bad news into

stock prices and preventing firms from hoarding negative information (Liu et al., 2024).

In this perspective, a typical channel of cross-market transmission might be the capi-
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tal structure arbitrage (CSA) strategies routinely used by rational and sophisticated arbi-

trageurs, such as hedge funds, private equity funds, or investment banks.1 Because the CDS

market provides valuable hedging instruments and stimulates price discovery, the literature

suggests that cross-market, firm-level trading strategies such as CSA may facilitate the in-

corporation of information about an individual firm’s default risk into the stock market. In

contrast, the impact of aggregate default risk on stock market informational efficiency seems

less clear.

In this paper, we investigate the role of CDS in stock market informational efficiency,

both at the individual firm level as well as in the aggregate. For this purpose, we extend

several econometric tests developed in the market efficiency literature to a context in which

default risk information (proxied in this study by CDS spreads) is available to the market and

accounted for in the optimal forecast produced by the stock market. Our theoretical approach

starts with expanding the description of the stock’s fundamental value by incorporating

rational expectations of default risk on top of expected future cash flows. For this purpose,

we rely on the log-linear dividend-ratio model (Campbell and Shiller, 1988) to extend the

notion of perfect-foresight equilibrium price to firms subject to default risk.2 Under perfect

foresight, we use realized CDS returns and elasticities of CDS premiums with respect to

stock prices to calculate an ex-post rational price. Our study’s fundamental premise is that

the more informative CDS returns are, the closer the market price will track this ex-post

rational price and the higher the stock market efficiency will be. Ceteris paribus, we expect

CDS trading to be more active and informative for firms with higher default risk (i.e., higher
1See, for example, Yu (2006), Duarte, Longstaff, and Yu (2007), Das and Hanouna (2009), Kapadia and

Pu (2012), Boehmer, Chava, and Tookes (2015), Augustin et al. (2020). These market participants exploit
mispricings between a company’s equity, corporate bonds, and single-name credit derivatives like CDS. In
practice, CSA may come under various forms. A typical strategy consists of selling (buying) CDS contracts
to bet on the convergence of the CDS market while simultaneously hedging in the equity market with a
short (long) position in stocks to hedge a short (long) position in CDS contracts (e.g., Yu, 2006; Das and
Hanouna, 2009).

2Perfect foresight assumes investors know the right equilibrium price conditional on the future state of
nature. The perfect-foresight price is thus the hypothetical price that would prevail if all market participants
had perfect knowledge of future events. It has been widely used in the volatility tests literature (e.g., Shiller,
1981; Grossman and Shiller, 1981).
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leverage or CDS levels), potentially leading to more efficient stock markets.

We then derive testable predictions by investigating deviations between perfect-foresight

and market prices. We first compare the market price volatility to the perfect-foresight price

volatility through variance ratios (Shiller, 1981; LeRoy and Porter, 1981). If CDS trading

improves market efficiency, we expect lower excess volatility and variance ratios closer to

one for firms with higher levels of leverage or CDS spreads. Second, as variance ratios do

not allow for definitive hypothesis testing, we extend Mankiw, Romer, and Shapiro’s (1985,

1991) orthogonality test. This testing strategy is based on the fact that, under the null

hypothesis of market efficiency, the market price is the best predictor of the ex-post rational

price. In particular, it has a lower forecast error compared to any other forecast. If CDS

impacts market efficiency, we would expect the spread between the variance of the perfect-

foresight price, which incorporates this information, and the variance of a naive forecast,

which does not, to narrow as the CDS market becomes more informative. Finally, we extend

West’s (1988) variance-bound test, which exploits the entire information set available to the

market. We propose a new efficiency score, which ranges from −100 (no efficiency) to 100

(full efficiency), to assess market efficiency. We expect higher efficiency scores when the CDS

market becomes more informative.

We test our predictions using a large and representative sample of U.S. firms. Our main

results are obtained for the universe of S&P 500 constituents over the period from 2008

to 2020. After filtering for the companies whose 5-year senior unsecured CDS contract is

actively traded, our universe comprises 339 single names. In line with the recent literature

(e.g., Collin-Dufresne, Junge, and Trolle, 2020), we consider liquid and representative credit

indices to proxy for aggregate credit risk information, including broad U.S. CDS indices,

such as the CDX Investment Grade and CDX High Yield credit indices, and value-weighted

CDS spreads.

Our preliminary findings, based on variance ratios, indicate significant excess volatility

of market prices compared to ex-post rational prices. However, we find that excess volatility
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declines with firm leverage, a key finding that is robust to the sampling period. Most

importantly, this preliminary result is robust to the choice of an observable proxy for equity-

credit elasticity. In line with our first prediction, this pattern suggests a significant rise in

firm-level efficiency when the single-name CDS market becomes more informative.

To confirm our preliminary findings, we run an extensive battery of orthogonality and

variance-bound tests augmented by default risk. Using our new metric ranging from −100

(no efficiency) to 100 (full efficiency), we document significant excess volatility of stock prices

compared to the stock’s fundamentals augmented by default risk information. We also find

a relatively low level of excess volatility for highly leveraged firms. To illustrate this point,

it is not uncommon for highly leveraged firms to display an efficiency score as high as 20

over 2008-2020, while all-equity firms typically display negative scores. This key finding is

robust to the sampling period and the firm’s economic sector. In other words, an active

CDS market for single names significantly improves efficiency at the firm level. This result

contrasts with Boehmer, Chava, and Tookes (2015), who find that the introduction of a

CDS market can reduce stock market efficiency. They show that CDS initiation reduces

liquidity on the fim’s stock price in “bad” states by driving out uninformed investors from

the stock market. However, their definition of price efficiency is based on the deviations

of actual transaction prices relative to an implicit random walk. Furthermore, Boehmer,

Chava, and Tookes (2015) control for firm-specific characteristics, such as the distance to

default, to capture the dynamic effect of CDS introduction. By contrast, our measures of

price efficiency are based on deviations from the explicit stock fundamentals. Moreover, they

reflect the impact of firm leverage in the cross-section of firms.

In addition to these results obtained at the firm level, we investigate to what extent credit

risk information impacts the aggregate equity market by running similar tests on various U.S.

stock indices, including broad indices such as the S&P 500 or sector indices. In contrast to

the results with individual firms, the aggregate analysis reveals low efficiency scores for large-

cap U.S. stock indices. This latter finding obtains for high-leverage industries such as Banks,
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Financials, or Utilities. Contrary to the firm-level case, we find highly significant variance

ratios well above one, positive variance spread statistics, and negative efficiency scores (well

below −50), indicating a high level of excess volatility or low level of efficiency. However,

sectoral indices such as the Banks, Financials, and Utility industry sectors exhibit higher

efficiency scores due to their heavy reliance on financial leverage above 0.40 and the presence

of firms with prominent credit information.

1.1 Related literature.

The asset pricing literature has recently started to revisit Samuelson’s dictum that “the

efficient markets hypothesis works better for individual stocks than for the stock market

as a whole” (Jung and Shiller, 2005). Gârleanu and Pedersen (2022) provide a theoretical

foundation for Samuelson’s dictum with an asymmetric-information equilibrium model where

investors choose between active management, passive management, or direct holdings. In

their setting, portfolios with the most systematic risk maximize inefficiency while long-short

portfolios eliminating factor risk are the least inefficient ones. They find that Samuelson’s

dictum holds when the number of securities is large because active investors “have stronger

incentives to correct (micro) inefficiencies in relative prices than to correct the overall (macro)

price level.” Glasserman and Mamaysky (2023) develop a model of information and portfolio

choice in which investors specialize in either macro or micro information because of fixed

attention costs. In line with Samuelson’s dictum, they find an equilibrium characterized by

micro- rather than macro-efficiency. Although our empirical findings are limited by design to

the role of single-name CDS in stock market efficiency, they are aligned with the predictions

offered by these two theoretical approaches.

The recent literature provides ample evidence about the informational role of CDS mar-

kets. Acharya and Johnson (2007) show that insider information flows into the stock market

through CDS trading in case of negative credit news. Batta, Qiu, and Yu (2016) show that

the CDS market conveys private information ahead of earnings announcements. Similarly,
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Kim et al. (2018) show that the managers of a firm with traded CDSs are more prone to

issue earnings forecasts and disclose voluntarily. Zhao et al. (2022) find that CDS trading

curbs equity analysts’ excessive optimism. These studies collectively suggest that equity an-

alyst forecasts become more accurate after the introduction of CDS trading. Kryzanowski,

Perrakis, and Zhong (2017) document that informed trading of negative firm-specific events,

such as earning surprises, takes place primarily in the CDS market, whose specialized par-

ticipants have greater ability to process both private and public information. As a result,

CDS trading generates information about a firm’s credit quality and lowers the informative-

ness of a credit rating downgrade announcement (Chava, Ganduri, and Ornthanalai, 2019).

Han, Subrahmanyam, and Zhou (2017) find that the CDS term structure contains infor-

mation about the future financial health of firms that diffuses to the stock market. Forte

and Lovreta (2023) show that CDS spreads significantly predict future asset volatility, a

key component of structural models of the firm for the determination of the optimal capital

structure.

Our paper draws on the literature examining information transmission and synchronicity

between the CDS and stock markets. Kapadia and Pu (2012) find a lack of market integra-

tion, which they attribute to firm-specific limits to credit-equity arbitrage. Lee, Naranjo,

and Velioglu (2018) show that while CDS spreads may react sluggishly to aggregate stock

market news, the CDS market plays a leading role in conveying firm-specific credit risk in-

formation around credit rating events, in contrast with the early literature.3 Augustin et al.

(2020) find that credit-equity integration and CDS-stock synchronicity improve with cross-

listings as they draw institutional investors’ attention, trigger the production of firm-specific

information, and allow for more credit-equity arbitrage activity. Lee, Naranjo, and Sirmans

(2021) document CDS-to-equity spillover effects related to future credit rating changes that

are well anticipated by quick-moving CDS spreads.

Finally, our paper relates more specifically to the burgeoning literature examining the
3See, for example, Narayan, Sharma, and Thuraisamy (2014), Hilscher, Pollet, and Wilson (2015), and

Marsh and Wagner (2016).
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impact of CDS on stock market efficiency. Qiu and Yu (2012) show that the CDS market

facilitates the price discovery process in the stock market. In a paper closely related to ours,

Boehmer, Chava, and Tookes (2015) examine the effect of single-name CDS markets on eq-

uity market quality and find that equity prices become less efficient when CDS contracts are

introduced. Chava, Ganduri, and Ornthanalai (2019) find that CDS trading mutes by 44 to

52% the reaction of stock prices to firms’ rating downgrades by reducing the informativeness

of credit rating downgrades. Liu et al. (2024) show that CDS markets facilitate the incorpo-

ration of bad news into equity prices via cross-market information spillover. They find that

the informational role of CDS reduces stock price crash risk.

The remainder of the paper proceeds as follows. Section 2 develops our theoretical ap-

proach and derives testable hypotheses. Section 3 describes the data used in the empirical

analysis. Section 4 details our main results. Section 5 reports results of a battery of robust-

ness tests. Section 6 concludes the article. Mathematical proofs and additional robustness

tests appear in the Online Appendix.

2. Modeling informational efficiency

2.1 Incorporating CDS information into the stock’s fundamental value

To motivate the incorporation of default risk, as proxied by CDS spreads, into the stock

price fundamental value, we focus on the elasticity of CDS spreads with respect to stock

prices. Figure 1 plots weekly CDS par spreads against weekly closing stock prices for two

highly leveraged firms: Ford Motor Co. (median debt-to-asset ratio 0.90) and United Airlines

(median debt-to-asset ratio 0.58). Here, the trendlines underscore the typical “hockey-stick”

pattern in CDS-stock scatter plots. Increases in CDS spread represent bad news for the

stock’s fundamental value, pushing the stock price downward. Conversely, a decline in the

CDS spread represents positive information about the firm’s financial health, pushing the

stock price upward. In other words, the trendline can be seen as the locus of the credit-equity

market equilibrium.
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Figure 1. Elasticity of CDS spreads against stock prices

This figure shows scatter plots of weekly CDS par spreads (5-year, senior unsecured contract) against weekly
closing stock prices (triangles). Trendlines have been fitted with power functions. Data source: Thomson
Reuters.
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Figure 1 suggests that the firm’s CDS spread should be a strictly decreasing function of

the firm’s stock price. Most importantly, the elasticity of CDS spreads with respect to stock

prices appears to play a pivotal role in capturing information transmissibility between the

two markets, especially for distressed companies. This paper uses a simple linear function

of firm leverage as an observable proxy for the CDS-stock elasticity. This modeling choice

is not arbitrary but based on a theoretical justification provided in Appendix A, which is

grounded in structural models of the firm (e.g., Merton, 1974). Section 3.3 provides further

details on the implementation of our proxy.4

We posit Pt = f(λt), where Pt is the stock price, λt is the CDS par spread, and f is a

deterministic and monotonic function. A parameterization often used in the literature (e.g.,

Frey and Schmidt, 2009; Zimmermann, 2021) is the power function f(λt) := λ−εtt , where

εt > 0 is the equity-credit elasticity. This parameterization captures the empirical CDS-
4Most CDS-stock studies do not take a time-varying equity-credit elasticity into account, with the notable

exceptions of Acharya and Johnson (2007), Qiu and Yu (2012), and Batta, Qiu, and Yu (2016), who use the
CDS spread. In Section 5 we consider two alternative approaches to proxy for the credit-equity elasticity,
including the CDS spread.
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stock pattern observed in Figure 1 and documented in the literature (e.g., Kapadia and Pu,

2012).

2.2 The perfect-foresight price under default risk

We can now generalize the notion of perfect foresight to firms subject to default risk.

Recall that the perfect-foresight price is the ex-post present value of all future cash flows,

i.e., the hypothetical price that would prevail if all market participants had perfect knowledge

of future events. The previous approach of the equity-credit elasticity leads to the following

extension.5

Definition 1. The default-risk augmented perfect-foresight price p∗t is the (log) stock price

that would prevail if equity investors had perfect knowledge of (i) future dividends, (ii) future

changes in the firm’s default intensity (which we assume can be proxied by changes in the

CDS par spread), and (iii) future equity-credit elasticities of the firm.6

Perfect foresight constrains investors to agree on equilibrium prices conditional on future

realized states of nature. Let It denote the public information set at a given point in time.

As no information in It other than the market price pt can improve the forecast of p∗t , we

have:

pt = E[p∗t | It], (1)

which says that the market price pt is an optimal predictor of the ex-post rational price p∗t .

In Proposition 3 of Appendix B, we derive a procedure to recursively estimate the perfect-

foresight price under default risk. This procedure relies on the log-linearization of equity

returns (Campbell and Shiller, 1988), which can be extended to firms subject to default risk

by noting that, under the power parameterization described in Section 2.1, the log-price is
5In the rest of the paper, lowercase letters (e.g., log-price p, log-dividend d) denote natural logarithms

of the corresponding uppercase letters (e.g., cash price P , cash dividend D).
6Henceforth, we refer to the default-risk augmented perfect-foresight price simply as “perfect-foresight

price.”
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Figure 2. The perfect-foresight price

Panels (a) and (b) plot weekly CDS spreads (5-year, senior unsecured contract) against weekly closing stock
prices (grey triangles), and weekly perfect-foresight prices (colored marks). Panels (c) and (d) plot the weekly
closing stock price time series (balls) and the weekly perfect-foresight price time series (red solid line). Data
source: Thomson Reuters.
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(c) Ford Motor (2008-2020)
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given by pt = −εtλt. The equity log-return is therefore expressed as a function of the CDS

log-return, namely, −ε∆ ln(λt).

Figure 2 illustrates our perfect-foresight calculations for two highly leveraged firms: Ford

Motor Co. (median debt-to-asset ratio 0.90) and United Airlines (median debt-to-asset

ratio 0.58). Panels (a) and (b) plot weekly CDS par spreads against closing stock prices

and perfect-foresight prices. We observe typical clusters of stock price-CDS points (grey
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triangles) scattered on both sides of the perfect-foresight price-CDS curve, which suggest

excess realized volatility of prices relative to the ex-post fundamental value. In other words,

we interpret larger deviations along the horizontal axis in this figure as a potential sign of

deviations from stock market efficiency.

2.3 Extending variance ratios

Inspired by the volatility tests literature (e.g., Shiller, 1981; LeRoy and Porter, 1981),

we now build on the previous insight to devise a credit-augmented efficiency test based

on variance comparisons. From rational expectations and Equation (1), we know that the

forecast error ηt := p∗t −pt must be unforecastable based on It. Since ηt must be uncorrelated

with pt, it follows that Var[p∗t ] = Var[ηt] + Var[pt] > Var[pt], which leads to the following

variance ratio bound:

υ := Var[pt]
Var[p∗t ]

6 1. (2)

Equation (2) says that the variance of the perfect-foresight (log) price p∗t provides an upper

bound to the variance of the market (log) price pt. As a result, Equation (2) represents

a testable restriction on the time series pt that extends variance bounds (Shiller, 1981;

LeRoy and Porter, 1981) to a context in which default risk information belongs to the public

information set It.

In Figure 2, close visual inspection reveals higher dispersion of the stock market price

around the perfect-foresight in United Airlines’ graph (Panel d) in comparison with Ford’s

graph (Panel c). This observation suggests a variance approach to assess market efficiency

by comparing the actual stock price variance against the perfect-foresight price variance.

Unsurprisingly, our calculations show that Ford’s variance ratio (0.28) over 2008-2020 was

much lower than United Airlines’s (1.62).
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2.4 Extending tests of stock market efficiency

At this stage, we recognize that variance ratios do not allow for definitive hypothesis

testing (e.g., Gilles and LeRoy, 1991). We pursue our approach by borrowing from Mankiw,

Romer, and Shapiro (1985, 1991, hereafter MRS), who propose a valid orthogonality test.7

Recall from Equation (1) that, under the null hypothesis of market efficiency, the stock

price at time t is the conditional expectation of the perfect-foresight price. The critical

insight of MRS is that, under the null, the forecast error of any alternative forecast based

on information available at time t is uncorrelated with the error in forecasting p∗t using pt.

MRS then introduce a naive forecast pot based on a limited information set, such as future

dividend forecasts. Using the independence of the two forecast errors, they write a variance

inequality that leads to a statistical test of market efficiency.

The following proposition extends Mankiw, Romer, and Shapiro’s (1991) variance in-

equality to a context in which default risk information is accounted for in the rational

expectations produced by the market (see online Appendix D.1 for a proof).

Proposition 1 (MRS orthogonality test). Let the naive forecast pot denote a linear

function of the current log dividend dt, and let define the variance spread:

q := E

(p∗t − pot
pt

)2
−

E
(p∗t − pt

pt

)2
+ E

(pt − pot
pt

)2
 . (3)

Under market efficiency, Equation (1) implies the variance identity q ≡ 0, as well as the

following variance inequality:

E

(p∗t − pot
pt

)2
 > max

E
(p∗t − pt

pt

)2
 ,E

(pt − pot
pt

)2
 . (4)

7The variance ratio based on Equation (2) implicitly assumes weak stationarity of the dividend process to
ensure the existence of the population variances of log prices and dividends. However, the dividend process
is likely to be a persistent integrated process, so de-trending may not be sufficient to compensate for a unit
root and the absence of a well-defined second moment. By contrast, Mankiw, Romer, and Shapiro’s (1985,
1991) test remains valid even when there is a unit root in the dividend process. See Gilles and LeRoy (1991)
for a survey of variance-bounds tests.
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Proposition 1 tells us that the market (pt) does a better job of forecasting the fundamental

value (p∗t ) than any other forecast (pot ). It implies that significant violations in the variance

inequality (4) suggest a lack of stock market efficiency. This provides the basis for a statistical

test of the role of default risk information in stock market efficiency. Section C.2 describes

the implementation of our testing strategy based on Equation (4).

Another testing strategy based on the perfect-foresight price is inspired by West’s (1988,

hereafter W88) variance-bound test. Following West’s (1998) approach, we distinguish be-

tween the public information set It available to the market and a subset Ht ⊂ It. We then

compare the typical size of a revision in the sub-optimal forecast made from Ht with the

typical size of the revision in the optimal market forecast. As the information set Ht is

smaller than It, the typical error made from Ht should be higher than the prediction error

committed by the market.

The following proposition formalizes this insight and generalizes West’s variance inequal-

ity (1988, Proposition 1) to a context in which default risk information is factored into the

rational expectations produced by the market (see online Appendix D.2 for a proof).

Proposition 2 (W88 variance-bound test). Let Ht := {1, rt−j, εt−j∆ ln(λt−j), d̃t−j | j >

0} denote a subset of the public information set available to the market (i.e., Ht ⊂ It).

Let p̌t := E[p∗t | Ht] denote the credit risk forecast of the perfect-foresight price obtained by

projection onto Ht. Assuming the transversality condition limT→∞ ρ
Tp∗t+T = 0 to exclude the

existence of rational bubbles, we have the following variance inequality at any time t:

W := E
[
(p̌t − E[p̌t | Ht−1])2

]
− E

[
(pt − E[pt | It−1])2

]
> 0. (5)

Proposition 2 says that the error in a partially-informed forecast, such as the one gen-

erated using only credit risk information, will be higher on average than the revision in the

forecast produced from the whole information set available to the market. In other words, a

sub-optimal forecast must be noisier than the market’s optimal forecast, placing a bound on
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the volatility produced by the market price. Details of the implementation of the test are

provided in Appendix C.3, based on Equation (5).

2.5 Hypotheses development

The literature on the CDS market’s informational advantage emphasizes its role in pro-

ducing and aggregating negative firm-specific information (e.g., Acharya and Johnson, 2007;

Batta, Qiu, and Yu, 2016; Kim et al., 2018). In particular, the CDS market is a preferred

venue for informed trading and price discovery prior to earnings announcements, especially

large negative earnings surprises (Batta, Qiu, and Yu, 2016). The dampening effect of

CDS trading on analyst forecasts optimism is stronger for firms with negative news, poorer

financial performance, or higher leverage (Zhao et al., 2022). CDS trading reduces the in-

formativeness of credit rating downgrades and mutes the equity market reaction to rating

downgrades (Chava, Ganduri, and Ornthanalai, 2019). In addition, CDS trading facilitates

the incorporation of negative information into stock prices (e.g., Qiu and Yu, 2012; Liu et

al., 2024). As a result, we hypothesize that stock market efficiency will increase with firm-

specific determinants of CDS spreads, such as firm leverage or idiosyncratic volatility (e.g.,

Zhang, Zhou, and Zhu, 2009; Ericsson, Jacobs, and Oviedo, 2009).

The precise mechanism we model and test in this paper is as follows. First, we assume

that the higher the firm’s default risk, the higher the prevalence of negative information,

and the higher the elasticity of stock prices relative to CDS spreads (see Appendix A for the

theoretical rationale). Second, as the equity-credit elasticity is related to information trans-

mission between the two markets, CDS trading should be more informational and impound

more firm-specific information into stock prices as default risk increases. We now summarize

the main hypotheses in our paper, which exploit the results in Propositions 1 and 2.

Hypotheses. The higher the firm’s leverage, the more we expect:

H1 the variance ratio υ to be close to 1, i.e., the variance of the ex-post rational price p∗t

to be closer to the variance of the market price pt.
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H2 the MRS variance spread q to be close to 0, i.e., the market price pt to be a better

forecast of the ex-post rational price p∗t compared to the naive forecast pot ;

H3 the W88 variance spread W to be large, i.e., the innovations in the imperfect forecast

p̌t based on limited credit risk information to be more volatile than the innovations in

the actual market price pt.

Hypotheses H1 to H3 follow directly from the market efficiency tests discussed in Sec-

tion 2.4. The implementation of hypothesis H1-H3 is discussed in Appendix C and empiri-

cally tested in Section 4.

3. Data

3.1 Selection of the firm sample

In this paper, we choose to focus on CDS rather than corporate bonds.8 We thus consider

the daily CDS closing (mid) par spreads of the most widely traded North American reference

entities. In addition, we impose three requirements to build a large and representative

universe of CDS-referenced firms. The first requirement is for bid-ask CDS quotes to be

available in Thomson Reuters (TR) over an extended 13-year sample period running from

January 01, 2008, to December 31, 2020.9 The second requirement is for the corresponding

common stocks to have been constituent companies of the S&P 500 stock index at some

point during the 2008-2020 sampling period. Finally, the historical debt-to-asset ratio has

to be available in the TR database over the entire sampling period. The coverage universe

of reference entities satisfying the previous three requirements comprises 339 single names.
8Three main reasons justify our choice. First, the CDS market is more standardized than the fragmented

bond market. As a result, bond trading is more expensive than CDS trading (Oehmke and Zawadowski,
2017). Second, CDS introduction reduces bond market efficiency and liquidity while CDSs lead the price
discovery process (Das, Kalimipalli, and Nayak, 2014). Finally, CDS prices contain unique information that
is not captured by other securities (Lee, Naranjo, and Velioglu, 2018). See also Lee, Naranjo, and Sirmans
(2024).

9Some firms in the sample experienced major credit events, such as defaults, mergers, or acquisitions,
leading to their early exit from the S&P 500 during the 2008-2020 period (e.g., Eastman Kodak, Dean
Foods). Conversely, other firms joined the index later in the sample period.

16



3.2 Credit market data

For consistency, we consider only CDS par spreads corresponding to U.S.-dollar denom-

inated contracts on the most liquid tenor (5 years), the lowest seniority (Senior Unsecured

Debt), and the same restructuring clause (No Restructuring, 2014 Protocol). TR provides

end-of-day prices by collecting daily single-name CDS quotes from over 30 contributors world-

wide and applying a rigorous screening procedure to eliminate outliers or doubtful data.10

Final CDS quotes are thus composite mid spreads calculated by TR and expressed in basis

points.11

3.3 Construction of a proxy variable for the equity-credit elasticity ε

Following Zimmermann (2021), we use a linear function of corporate leverage as a time-

varying proxy for the firm’s equity-credit elasticity, ε. To measure the firm’s financial lever-

age, we use the debt-to-asset leverage ratio, that is, the ratio of total debt book value to

enterprise value:12

Short-term Debt + Long-term Debt
Market Capitalization + Total Debt + Minority Interest + Preferred Stock− Cash . (6)

We gather daily estimates of the debt-to-asset ratio over 2008-2020 for each sample firm.

Notice that the fluctuations in the firm’s market capitalization on top of the changes in total

debt book value entail daily variations in corporate leverage.
10Mayordomo et al. (2014) offer an in-depth comparative study of the TR database and five other public

sources of corporate CDS prices.
11The timing for the end-of-day composite calculation is in T+1 (5:00 am GMT). As this last update

takes place after the end of trading for U.S. stocks, there is no bias in detecting information flows from stock
markets to credit markets.

12A conservative approach to the financial leverage of financial institutions is in order. In the case of
banks, for example, TR includes due from other banks into cash on hands and customer deposits should not
appear in total debt. For insurance companies, policyholders’ liabilities should not appear in total debt.
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Table 1. Firm-level descriptive statistics

The table reports summary statistics for firm characteristics (Panel A), correlations (Panel B), and business sectors (Panel C). The sample consists
of 339 U.S. firms over the period 2008:01 to 2020:12. Sample statistics are computed across all observations. Data source: Thomson Reuters.

5th perc. 25th perc. Median Mean 75th perc. 95th perc. SD Observations

Panel A: firm-level statistics
Size (mkt. cap., $bn) 2.17 8.01 17.17 39.55 39.02 163.90 75.50 853,766 100.0%
Dividend yield (%) 0.00 1.02 2.12 2.50 3.24 5.94 3.68 853,766 100.0%
Total debt (book value, $bn) 0.70 2.69 5.48 21.96 11.99 58.57 73.75 853,766 100.0%
Leverage (debt to assets) 0.07 0.16 0.26 0.32 0.42 0.78 0.23 853,766 100.0%
CDS level (mid-price, bps) 27 50 82 148 154 475 252 853,766 100.0%
Idiosyncratic stock volatility 0.12 0.16 0.21 0.26 0.30 0.56 0.16 853,766 100.0%
Daily observations by firm 420 2,096 3,027 2,518 3,099 3,210 877 853,766 100.0%

Size ($bn) Div. yield (%) Tot. Debt ($bn) Leverage CDS (bps) Volatility ] Firms Observations

Panel C: correlation matrix
Size ($bn) 1
Dividend yield (%) −0.02 1
Total debt ($bn) 0.32 0.02 1
Leverage −0.11 0.11 0.47 1
CDS level (bps) −0.16 0.04 −0.02 0.46 1
Idiosyncratic stock volatility −0.20 0.09 0.01 0.44 0.54 1

Panel C: business sector-level average statistics
Academic & Educ. Services 3.66 2.50 0.49 0.16 129 0.24 1 3,138 0.4%
Basic Materials 15.82 2.29 4.82 0.28 149 0.28 24 54,891 6.4%
Consumer Cyclicals 22.49 2.32 8.99 0.31 213 0.30 66 185,549 21.7%
Consumer Non-Cyclicals 61.57 2.62 19.27 0.25 97 0.20 41 111,580 13.1%
Energy 43.10 2.41 9.13 0.29 144 0.32 30 72,549 8.5%
Financials 49.88 2.25 110.54 0.51 147 0.27 39 93,420 10.9%
Healthcare 50.38 1.39 8.86 0.23 101 0.23 25 60,657 7.1%
Industrials 30.41 2.34 8.69 0.28 117 0.22 41 100,862 11.8%
Real Estate 19.30 4.64 8.14 0.34 145 0.24 15 38,241 4.5%
Technology 85.94 2.24 15.07 0.27 180 0.28 32 70,698 8.3%
Utilities 18.30 3.81 14.16 0.47 110 0.19 25 62,181 7.3%
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3.4 Firm-level sample overview

Merging all data sets and applying the appropriate data filters leaves us with 853,766

joint observations of CDS spreads, stock prices, and firm characteristics over the period

2008:01 to 2020:12. Our final sample consists of 339 U.S. firms, with 279 obligors having

an average Standard and Poor’s (S&P) credit rating of investment grade (AAA, AA, A,

and BBB) and the remaining 60 obligors below investment grade (BB, B, and CCC) or non

rated. Our coverage is similar to comparable studies on U.S. public firms with traded CDS,

such as Kapadia and Pu (2012), Lee, Naranjo, and Velioglu (2018), or Chava, Ganduri, and

Ornthanalai (2019).

Table 1 provides detailed descriptive statistics of the firm-level dataset. Panel A provides

summary statistics for firm characteristics such as size, total debt, dividend yield, leverage,

CDS level, and idiosyncratic volatility.13 The mean CDS spread (resp. leverage) across the

entire sample is 148 basis points (resp. 0.32). These metrics are close to the ones reported

by Lee, Naranjo, and Velioglu (2018) for public firms.

Panel B reports correlations. As already documented in the literature (e.g., Lee, Naranjo,

and Velioglu, 2018), firm leverage correlates with CDS spread levels (0.46) but shows weak

correlation with firm size (−0.11) or dividend yield (−0.04). The CDS spread is negatively

correlated with firm size (−0.16) and thus slightly increases for smaller firms, in line with

Lee, Naranjo, and Sirmans (2021). Idiosyncratic volatility is significantly correlated with

leverage (0.44) and CDS (0.54).

Panel C breaks down the sample into business sectors listed in the Thomson Reuters

Business Classification (TRBC). We notice that the two most leveraged industries are the

Financials (0.51) and Utilities (0.47) business sectors. However, with only 10.9% of the

overall observations, the Financials sector’s weight in the sample remains limited.
13Idiosyncratic equity volatility is a key determinant of default risk (e.g., Campbell and Taksler, 2003) and

shows slightly higher correlation with firm fundamentals such as CDS level (0.54 vs. 0.49) or firm leverage
(0.44 vs. 0.43) than realized volatility. We estimate 1-year idiosyncratic volatility as the (annualized)
standard residual error in the regression of daily stock returns against daily S&P 500 market returns over
one year.

19



3.5 Aggregate-level sample overview

We test the implications of our model at an aggregate level using a variety of value-

weighted portfolios of U.S. stocks belonging to our firm-level dataset. We use U.S. equity

indices provided by Standard & Poor’s. To capture the dynamics of large-cap U.S. compa-

nies endowed with an active CDS market, we first consider the S&P 100 and the S&P 500

stock indices. Covering approximately 80% of all U.S. market capitalizations, this last index

provides a representative gauge of the overall U.S. equity market. Second, to better under-

stand the role of classic asset pricing factors such as Value and Growth, we consider the S&P

500 Value and the S&P 500 Growth indices. Third, to capture the role of industry sectors

more specifically, we also consider the ten sub-indices of the S&P 500 corresponding to the

ten main economic sectors. Fourth, to allow for a more refined focus on highly-leveraged

firms in the Financials sector, we also include the S&P 500 sub-index of Banks. Finally,

we complement our sample with the S&P 400 Mid Cap stock index, an index of mid-sized

companies that do not overlap with the S&P 500 constituents.

Table 2 reports the fundamental metrics of each index. To reconstitute these metrics, we

follow the methodology of S&P U.S. Indices by weighing indices with float-adjusted market

capitalizations.14 Additions and deletions of constituent companies are thus reflected on a

daily basis. In addition, to obtain the exact timeline of dividend flows paid out by the index,

we compare its price return version without adjustment for regular cash dividends to its

total return version with reinvested dividends.15 From the daily composition of each index,

we can thus reconstitute its log-dividend price ratio, its aggregate debt-to-asset ratio, and its

aggregated CDS par spread. This aggregate measure of financial leverage serves as a proxy
14The share counts used to calculate sector indices are based on the free-floating shares available to

investors instead of the total outstanding shares. For more details on the float adjustment methodology of
S&P U.S. equity indices, we refer to the supporting document published by S&P Dow Jones Indices.

15Index levels are calculated by dividing the market capitalization with a divisor keeping track of any
change in the overall market capitalization that should not alter individual stock prices (e.g., corporate
actions of constituent companies, addition or deletions of constituents, changes in free-floating share counts).
For more details on the S&P U.S. equity indices calculation, we refer to the supporting document published
by S&P Dow Jones Indices.
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Table 2. Descriptive statistics of value-weighted stock portfolios

This table reports summary statistics for the various U.S. stock indices used as valued-weighted stock port-
folios in this paper. Sample statistics are computed across all observations. The sample period is 2008:01 to
2020:12. Data source: Thomson Reuters.

Avg. ] Avg. size Avg. firm Avg. div. Weighted Weighted Isoweight
firms ($trn) size ($bn) yield (%) leverage CDS (bps) CDS (bps) Obs.

Panel A: large-cap portfolios
S&P 100 102 10.16 101.1 2.40 0.23 59 77 3,189
S&P 500 499 18.11 36.7 2.04 0.23 72 121 3,189

Panel B: global portfolios
S&P 500 Value 359 12.11 34.5 2.76 0.30 78 131 3,189
S&P 500 Growth 301 11.71 40.2 1.58 0.16 61 97 3,189
S&P 400 Mid Cap 400 0.54 5.5 1.78 0.22 206 287 3,189

Panel C: sector portfolios
S&P Banks 17 0.78 45.7 2.62 0.68 87 101 2,943
S&P Financials 78 2.45 32.3 2.23 0.56 97 124 3,189
S&P Utilities 30 0.49 17.3 3.93 0.43 99 119 3,189
S&P Real Estate 22 0.37 15.1 3.77 0.31 153 151 2,953
S&P Communic. Serv. 9 0.79 86.7 5.18 0.31 125 222 2,953
S&P Industrials 63 1.51 24.1 2.28 0.26 70 88 3,189
S&P Materials 29 0.47 17.3 2.29 0.23 109 133 2,815
S&P Consumer Discr. 79 1.75 23.8 1.51 0.19 99 162 3,189
S&P Consumer Staples 38 1.47 39.7 2.82 0.17 48 77 3,121
S&P Healthcare 54 2.14 39.4 1.91 0.16 46 80 3,189
S&P Energy 36 3.38 91.2 2.84 0.17 73 159 3,189
S&P Technology 70 3.07 44.9 1.33 0.09 50 109 3,189

for the index’s credit-equity elasticity.

4. Results

4.1 Efficiency tests at the firm level

4.1.1 Preliminary results on variance ratios

To convey the gist of our efficiency results, we first provide a preliminary assessment

of the distribution of the variance ratio, υ. Recall that a variance ratio above one can be

interpreted as a sign of market inefficiency. This is because the market price, pt, exhibits

significant excess volatility compared to the perfect-foresight price, p∗t .

Figure 3 summarizes our story. Panel (a) shows the distribution of variance ratios es-
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Figure 3. Variance ratios by firm leverage quintiles

These boxplots compare distributions of the variance ratio υ across leverage percentiles of firms. In the first
stage, we sort the 339 firms (resp. 3,608 firm-years) into quintiles based on the firm’s (resp. firm-year’s)
average annual leverage, Q1 being the quintile with the smallest leverage. In the second stage, we compute
for each firm i (resp. firm-year (i, t)) the variance ratio υ̂i (resp. υ̂i,t). The sample period is 2008:01 to
2020:12. Data source: Thomson Reuters.
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timated using individual firms. At first sight, the right-most boxplot in Panel (a) suggests

an overall lack of efficiency at the firm level, since the median variance ratio across all firms

is well above one in the 2008-2020 sample period (median 6.23). However, an important

finding emerges from the granular sort by leverage quintile. Excess volatility decreases with

financial leverage and tends to disappear in the most leveraged quintiles (Q3-Q5). This pre-

liminary finding is robust to the sample period. We obtain similar results for the credit crisis

(2008-2009) and post-crisis (2010-2020) periods (unreported).

One concern with firm-level full samples is the potential look-ahead bias caused by sorting

firms based on their full-sample leverage mean. In addition, our results might be driven by

some specific year or company since not all firms’ historical samples have the same length.

To address these concerns, we repeat the analysis by firm-years as follows. First, every year

we sort firms by leverage into quintiles. Next, we require at least 100 observations in each

firm-year sample to avoid small-sample issues due to missing data. We thus obtain 3,606
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Table 3. Determinants of the variance ratio

This table reports the variance ratio υ across leverage percentiles of firm-years. In the first stage, we sort the
3,606 firm-years into quintiles based on the firm-year’s average annual leverage, Q1 being the quintile with the
smallest leverage. In the second stage, we compute for each firm-year (i, t) the variance ratio υ̂i,t. Summary
statistics for each quintile are the medians across firm-years of the time-series means of the characteristics for
each firm. Within each quintile, meta p-values are combined across firm-years via Fisher’s sum of logarithms
method (e.g., Heard and Rubin-Delanchy, 2018). ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%,
1%, and 5% levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Q1 (low) Q2 Q3 Q4 Q5 (high) All firm-years

Panel A: simple sort by firm leverage
Avg. firm leverage 0.10 0.19 0.27 0.39 0.67 0.32
] firm-years 726 723 722 720 715 3,606
Median υ̂ 35.02∗∗∗ 9.12∗∗∗ 4.56∗∗∗ 2.59∗∗∗ 1.34∗∗∗ 4.89∗∗∗

Panel B: simple sort by firm CDS spread
Avg. CDS spread (bps) 37.6 61.1 91.8 141.8 415.2 148.8
Median υ̂ 8.46∗∗∗ 5.76∗∗∗ 5.81∗∗∗ 4.20∗∗∗ 2.91∗∗∗ 4.89∗∗∗

Panel C: double sort by firm leverage and firm size
Q1 (low size) 35.97∗∗∗ 11.13∗∗∗ 6.81∗∗∗ 3.81∗∗∗ 1.94∗∗∗ 4.04∗∗∗
Q2 32.32∗∗ 9.62∗∗∗ 5.32∗∗∗ 3.16∗∗∗ 1.57∗∗∗ 4.28∗∗∗
Q3 38.20∗∗∗ 10.23∗∗∗ 4.00∗∗∗ 1.90∗∗∗ 1.98∗∗∗ 5.02∗∗∗
Q4 37.33∗∗∗ 9.31∗∗∗ 3.96∗∗∗ 2.80∗∗∗ 1.21∗∗∗ 5.94∗∗∗
Q5 (high size) 28.68∗∗∗ 6.12∗∗∗ 3.60∗∗∗ 1.77∗∗∗ 0.52∗∗∗ 6.00∗∗∗

Panel D: double sort by firm leverage and idiosyncratic volatility
Q1 (low vol) 20.25∗∗∗ 7.16∗∗∗ 3.80∗∗∗ 1.96∗∗∗ 0.76∗∗∗ 5.02∗∗∗
Q2 37.81 7.99∗∗∗ 4.32∗∗∗ 2.32∗∗∗ 0.89∗∗∗ 5.87∗∗∗
Q3 40.97∗∗∗ 10.94∗∗∗ 5.32∗∗∗ 2.60∗∗∗ 1.52∗∗∗ 5.49∗∗∗
Q4 42.29∗∗∗ 11.92∗∗∗ 4.78∗∗∗ 2.82∗∗∗ 1.78∗∗∗ 5.32∗∗∗
Q5 (high vol) 34.83∗∗∗ 7.61∗∗∗ 4.50∗∗∗ 3.25∗∗∗ 1.81∗∗∗ 3.74∗∗∗

valid firm-year samples, for each of which we estimate variance ratio. Finally, we collect

the variance ratios for each leverage quintile. This approach enables us to run numerous

variance ratios and obtain a more granular view of the results. Additionally, since all tests

now apply to one-year samples, we treat all firms of the universe on the same footing and

assign the same weight to all years in the period 2008-2020.

Panel (b) of Figure 3 shows the distributions of variance ratios estimated using firm-

years.The convergence to unity is sharper when υ is estimated by company-years (sample

size: 3,606) rather than individual firms (sample size: 339). In other words, market efficiency

seems to increase with firm leverage as default risk information ingrained in the fundamentals
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p∗t becomes more and more reflected in the market’s optimal forecast, pt.

Table 3 further investigates the impact of CDS determinants on the variance ratio υ̂ by

reporting sorts across firm-year percentiles. We think of each firm-year estimation as an

independent study and perform a meta-analysis of significance levels. We thus perform an

F -test for variance equality on each firm-year estimation and combine the p-values within

each quintile via Fisher’s sum of logarithms method (e.g., Heard and Rubin-Delanchy, 2018).

Panel A reports a simple sort based on leverage and confirms the negative and monotonic

relation between υ̂ and firm leverage, as predicted in Section 2.5 and illustrated in Figure 3.

Panel B shows a decrease of υ̂ with CDS spread, which is unsurprising given the significant

correlation between CDS spread and firm leverage (0.47). By contrast, the finer double sort

by size and leverage shown in Panel C does not indicate any discernable relation between υ̂

and firm size. Finally, the double sort by leverage and volatility (Panel D) reveals a slightly

increasing relation between υ̂ and idiosyncratic volatility. This is not surprising, given the

high correlation between idiosyncratic volatility and leverage in Table 1.

As mentioned previously, variance ratios do not allow for definitive hypothesis testing.

Therefore, we now turn on orthogonality and variance-bound tests to confirm this preliminary

insight.

4.1.2 Firm-level efficiency tests

Table 4 reports estimates for MRS orthogonality and W88 variance-bound tests.16 Panels

A through C report results for individual firms on different sub-periods. Since our sample

includes the 2008-2009 credit crisis, our empirical results might be driven by this specific

period of high corporate leverage, intense stock market volatility, and turmoil in credit

markets. Therefore, we repeat our efficiency tests on two distinct sub-sample periods to

address this concern: the financial crisis (2008:01-2009:12, Panel B) and the post-crisis period

(2010:01-2020:12, Panel C). We sort firms into quintile portfolios for each sub-period based
16We implement the MRS orthogonality test with an equity risk premium p = 5% over the long-term U.S.

Treasury rate. This assumption seems reasonable for the U.S. stock market for the period 2008-2020.
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on the average firm leverage over the considered sample period. Panel D reports results for

the entire sample (2008-2020) using firm-years instead of individual firms.

We interpret a variance spread q
T

far from zero, either positively or negatively, as a

sign of market inefficiency.17 Although we observe relatively high absolute values for q̂
T

across all firms and over the three sample periods, the key takeaway of Table 4 is the

inverse pattern of |q̂
T
| with respect to firm leverage, that is, q̂

T
monotonically decreases as

leverage increases over the entire sample period (2008-2020). A similar pattern holds for

the crisis (2008-2009) and post-crisis (2010-2020) periods. This provides reliable evidence

of a significant relationship between market efficiency and firm leverage. In Section 5.4,

additional robustness tests show that this key finding is robust to the size of the equity risk

premium (p) and the time horizon (T ) chosen to estimate the perfect-foresight price P ∗t→T .

Turning to the W88 variance bound test, as explained in Section C.3, we obtain the

(robust) standard error and t statistic of Ŵ by GMM for each firm.18 For clarity, Table 4

reports a modified efficiency score ŵ, defined in Equation (C6), instead of Ŵ . This efficiency

score ranges from −100 (no efficiency) to 100 (total efficiency). Although the overall score

of market efficiency for the entire sample in Panel A is relatively low at −80.6, it regularly

increases along with firm leverage. It culminates at −28.1 in the last quintile, indicating

that credit market activity strongly influences the stock market efficiency of highly leveraged

firms. We find qualitatively similar results for the two other sample periods in Panels B and

C, which reduces concerns about potential bias caused by the 2008–2009 credit crisis.

The decreasing pattern in w observed across leverage quintiles suggests once again that

efficiency improves with firm leverage. Nevertheless, the median ŵ is still negative, even for

the highest leverage quintile. To further investigate this, we consider the sub-sample of firms
17As explained in Section C.2, the t-statistic of the sample mean q̂

T
follows a χ2(1)-distribution for each

firm. Similarly to Table 3, we thus combine the p-values via Fisher’s sum of logarithms method within each
leverage quintile.

18We implement the W88 variance-bound test with an AR lag order 5 for the credit risk variable of all
firms in the sample. We have run the test for various values of the AR lag order smaller than 5 with similar
results. For brevity, we do not report these results. Once again, we combine p-values within each quintile
via Fisher’s sum of logarithms method.
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Table 4. Efficiency tests by firm quintiles

This table reports MRS orthogonality and W88 variance-bound tests. We sort firms into quintile portfolios
based on their average annual leverage, Q1 being the smallest leverage quintile. The summary statistics
reported for each quintile are the averages (across firms) of the time-series means of the characteristics for
each firm. The absolute value of the MRS variance spread statistic qT is given by Equation (C5), where
the naive forecast is estimated with an equity risk premium p = 0.05. The χ2(1) statistic for the null
hypothesis H0 : q̂T = 0 is calculated via robust standard errors corrected for heteroscedasticity and serial
correlation (Newey and West, 1987). Estimates of the market efficiency score w are given by Equation (C6)
and calculated with an AR lag order q = 5. Within each quintile, p-values are combined across firms via
Fisher’s sum of logarithms method (e.g., Heard and Rubin-Delanchy, 2018). ∗∗∗, ∗∗ and ∗ denote statistical
significance at the 0.1%, 1%, and 5% levels, respectively. The sample period is 2008:01 to 2020:12. Data
source: Thomson Reuters.

Q1 (low) Q2 Q3 Q4 Q5 (high) All firms

Panel A: full sample of firms (2008-2020)
Avg. firm leverage 0.11 0.20 0.29 0.39 0.65 0.33
] firms 68 68 68 68 67 339
Observations 172,028 168,867 180,476 178,396 153,999 853,766
Med. variance spread, |qT | 1.20∗∗∗ 0.83∗∗∗ 0.62∗∗∗ 0.45∗∗∗ 0.41∗∗∗ 0.64∗∗∗
Med. efficiency score, w −96.2∗∗∗ −89.7∗∗∗ −77.9∗∗∗ −70.6∗∗∗ −28.1∗∗∗ −80.6∗∗∗
Positive scores (%) 0.0 0.0 0.0 3.0 27.3 6.0
Avg. positive score, w+ 0.0 0.0 0.0 0.7 9.1 2.0

Panel B: credit crisis sample of firms (2008-2009)
Avg. firm leverage 0.10 0.20 0.32 0.48 0.77 0.37
] firms 57 57 57 57 57 285
Observations 22,472 22,063 22,285 22,426 23,451 112,697
Med. variance spread, |qT | 1.49∗∗∗ 1.52∗∗∗ 1.49∗∗∗ 0.78∗∗∗ 0.76∗∗∗ 1.25∗∗∗
Med. efficiency score, w −96.4∗∗∗ −91.0∗∗∗ −79.1∗∗∗ −64.0∗∗∗ −33.7∗∗∗ −82.4∗∗∗
Positive scores (%) 0.0 0.0 1.8 10.7 28.6 8.1
Avg. positive score, w+ 0.0 0.0 0.1 1.7 9.0 2.1

Panel C: post-crisis sample of firms (2010-2020)
Avg. firm leverage 0.11 0.19 0.28 0.38 0.63 0.32
] firms 66 66 66 66 66 330
Observations 146,140 149,896 152,744 155,365 136,505 740,650
Med. variance spread, |qT | 1.08∗∗∗ 0.81∗∗∗ 0.58∗∗∗ 0.52∗∗∗ 0.45∗∗∗ 0.60∗∗∗
Med. efficiency score, w −97.7∗∗∗ −89.8∗∗∗ −82.2∗∗∗ −65.9∗∗∗ −28.3∗∗∗ −81.3∗∗∗
Positive scores (%) 0.0 0.0 0.0 6.2 29.7 7.1
Avg. positive score, w+ 0.0 0.0 0.0 1.1 12.0 2.6

Panel D: full sample of firm-years (2008-2020)
Avg. firm leverage 0.10 0.18 0.27 0.39 0.67 0.32
] firm-years 726 723 722 720 715 3,606
Observations 169,288 169,918 170,223 167,590 169,370 846,389
Med. variance spread, |qT | 0.79∗∗∗ 0.62∗∗∗ 0.51∗∗∗ 0.49∗∗∗ 0.44∗∗∗ 0.55∗∗∗
Med. efficiency score, w −97.7∗∗∗ −89.8∗∗∗ −82.2∗∗∗ −65.9∗∗∗ −28.3∗∗∗ −81.3∗∗∗
Positive scores (%) 0.0 0.0 0.0 6.2 29.7 7.1
Avg. positive score, w+ 0.0 0.0 0.0 1.1 12.0 2.6
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with a positive score ŵ+ := max(ŵ, 0). The key finding of our variance-bound test is thus

located in the penultimate column of Table 4. Panel A shows that, over the entire sample

period from 2008 to 2020, 27.3% of firms in the highest leverage quintile exhibit positive

scores, with an average positive score of 9.1. This significant proportion of positive scores in

Q5 contrasts with the four other quintiles and suggests much higher efficiency of the stock

market for highly leveraged firms. Equally important, Panels B and C show that this finding

is robust to the sample period.

Finally, Panel D replicates these results using firm-years instead of individual firms.

The patterns observed for the MRS variance spread q̂T and the W88 efficiency score w are

qualitatively similar to those obtained using individual firms, confirming that our results are

not driven by this implementation choice.

4.2 Aggregate-level efficiency tests

We run variance ratios, orthogonality, and variance-bound tests on several value-weighted

stock portfolios to test for stock market efficiency at the aggregate level. We consider dif-

ferent proxies to represent aggregate credit risk information. Our first two proxies are liquid

and representative credit indices: the CDX Investment Grade (CDX.IG) and CDX High

Yield (CDX.HY), which are benchmarks for the two main segments of the North-American

corporate credit market (e.g., Collin-Dufresne, Junge, and Trolle, 2020). A third proxy is

provided by the aggregated CDS spread of the considered stock index constituents.19 This

last approach can better reflect the specific default risk incorporated in each stock index.

Table 5 reports efficiency test results at the aggregate level on the various U.S. stock

indices described in Section 3.5. We implement the MRS orthogonality test identically to the

firm-level case (see Section C.2 for implementation details) with an equity risk premium p =

0.05 over the risk-free rate to estimate the naive forecast. Again, we implement West’s (1988)

variance-bound test identically to the firm-level case (see Section C.3 for implementation
19We first reconstitute the daily composition and weighting of each stock index. The aggregated CDS of

the index is then calculated as the weighted average of the CDS par spreads of its constituents.
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details). We use a weekly AR lag order q = 5 in the three credit risk scenarios.20

Panel A focuses on the two S&P flagship stock indices—the S&P 100 and S&P 500. At

first sight, the surprisingly high variance ratios between 3.09 and 7.08 under every proxy

of aggregated credit risk and every sample period suggest significant excess volatility for

both indices. Although less statistically significant, the variance spread statistics q
T
range

between 0.89 and 2.35, reinforcing this preliminary assessment. This preliminary finding is

then fully confirmed by the highly-significant, negative scores w of market efficiency achieved

by these two indices. Again, the critical finding of Table 5 is the utmost lack of stock index

efficiency for the two U.S. large-cap indices. The S&P 500 index achieves a paltry median

score of −65.87 out of 100 under CDX.IG credit risk at best. This (negative) score should be

contrasted with the (positive) scores of the highly-leveraged firms in Table 4, which quickly

attain 10 out of 100.

Panel B focuses on mid- to large-cap, non-sectoral stock indices—the S&P 500 Value and

Growth and the S&P 400 Mid Cap. Similarly to the two large-cap indices, we find highly-

significant variance ratios well above one, positive variance spread statistics, and negative

efficiency scores (well below −50) across the board, indicating a high level of excess volatility

or low level of efficiency. This is especially true for the S&P 500 Growth index, which has a

low level of aggregated leverage (0.16). It is noteworthy to mention the significant difference

in market efficiency between the Value and Growth indices. The S&P Value index displays

almost twice the aggregated level of leverage of the S&P Growth index (0.30 compared with

0.16) and exhibits, to some extent, better index efficiency scores.

Panel C reports results for sector sub-indices of the S&P 500 sorted by aggregated lever-

age. Except for a few highly-leveraged sectors, the variance ratio estimates are well above

unity and provide a picture similar to non-sectoral indices. The critical finding of Table 5

lies in the three columns reporting the MRS variance spread statistic. We observe a statistic

decreasing with aggregated leverage that leads to striking contrasts between both ends of
20Similarly to the firm level, we have run the test for various lag orders q 6 5 with (unreported) results

primarily unchanged.
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Table 5. Aggregate-level tests of efficiency

This table reports efficiency tests for U.S. stock indices under three credit risk scenarios: (a) CDX Investment Grade (CDX IG), (b) CDX High Yield
(CDX HY), and (c) value-weighted average of the index constituents’ CDS (Index weighted CDS). The leverage and dividend yield reported for each
index is the mean of the daily value-weighted averages of the index constituents’ debt-to-asset ratios. Panels A, B, and C report estimates for the
variance ratio υ, the MRS variance spread statistic |q

T
| given by (C5) and estimated with an equity risk premium p = 0.05, and the market efficiency

score w given by (C6) and estimated with an AR lag order q = 5. Panel D reports correlations of efficiency statistics with the weighted leverage, the
weighted dividend yield, the weighted CDS and the average market capitalization. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and
5% levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Weighted Div. CDX IG CDX HY Index weighted CDS
LeverageYield (%) υ |q

T
| w υ |q

T
| w υ |q

T
| w Obs.

Panel A: large-cap portfolios
Full sample (2008-2020)

S&P 100 0.23 2.40 4.00∗∗∗ 1.29∗ −73.99∗∗∗ 3.50∗∗∗ 1.32∗∗ −78.19∗∗∗ 4.57∗∗∗ 1.46∗∗∗ −82.23∗∗∗3,189
S&P 500 0.23 2.04 4.41∗∗∗ 1.26 −75.14∗∗∗ 3.89∗∗∗ 1.29∗ −79.03∗∗∗ 5.32∗∗∗ 1.46∗∗∗ −85.93∗∗∗3,189

Credit crisis sample (2008-2009)
S&P 100 0.25 2.39 5.82∗∗∗ 1.86∗∗∗ −78.43∗ 5.24∗∗∗ 1.71∗∗∗ −86.69∗∗ 4.59∗∗∗ 2.19∗∗∗ −84.16∗∗∗ 484
S&P 500 0.25 2.08 6.33∗∗∗ 1.96∗∗∗ −82.03∗ 5.57∗∗∗ 1.84∗∗∗ −86.21∗∗ 6.13∗∗∗ 2.35∗∗∗ −87.24∗∗∗ 484

Post-crisis sample (2010-2020)
S&P 100 0.23 2.40 5.79∗∗∗ 0.97 −70.37∗∗∗ 5.91∗∗∗ 1.02 −71.96∗∗∗ 6.01∗∗∗ 1.08∗∗∗ −80.97∗∗∗2,705
S&P 500 0.23 2.03 6.24∗∗∗ 0.94 −71.20∗∗∗ 6.35∗∗∗ 1.00 −72.57∗∗∗ 7.08∗∗∗ 1.08∗∗∗ −84.79∗∗∗2,705

Median of index-year samples (2008-2020)
S&P 100 0.23 2.39 3.09∗∗∗ 0.89 −65.87∗∗∗ 4.29∗∗∗ 0.91 −71.09∗∗∗ 4.09∗∗∗ 1.01∗∗∗ −81.43∗∗∗ 245
S&P 500 0.23 2.04 3.25∗∗∗ 0.93 −68.31∗∗∗ 4.44∗∗∗ 0.96 −71.10∗∗∗ 4.78∗∗∗ 1.09∗∗∗ −86.44∗∗∗ 245

Panel B: global portfolios
Full sample (2008-2020)

S&P 500 Value 0.30 2.76 2.51∗∗∗ 0.41∗ −61.66∗∗∗ 2.08∗∗∗ 0.44∗∗∗ −67.47∗∗∗ 3.53∗∗∗ 0.68∗∗∗ −67.39∗∗∗3,189
S&P 500 Growth 0.16 1.58 7.91∗∗∗ 2.23 −88.09∗∗∗ 7.51∗∗∗ 2.27 −89.82∗∗∗ 9.96∗∗∗ 2.37∗ −93.17∗∗∗3,189
S&P 400 Mid Cap 0.22 1.78 5.23∗∗∗ 0.84∗ −79.91∗∗∗ 4.95∗∗∗ 0.91∗∗ −83.06∗∗∗ 19.15∗∗∗ 1.42∗∗ −84.35∗∗∗3,189

Credit crisis sample (2008-2009)
S&P 500 Value 0.36 3.16 5.23∗∗∗ 0.58 −73.88∗ 4.20∗∗∗ 0.44∗ −78.67∗ 6.04∗∗∗ 1.11∗∗∗ −69.94∗∗ 484
S&P 500 Growth 0.16 1.37 9.67∗∗∗ 3.80∗∗∗ −89.88∗∗∗ 9.86∗∗∗ 3.72∗∗∗ −93.18∗∗∗ 8.92∗∗∗ 4.18∗∗∗ −92.57∗∗∗ 484
S&P 400 Mid Cap 0.23 1.92 8.49∗∗∗ 1.90∗∗∗ −87.09∗∗∗ 6.76∗∗∗ 1.89∗∗∗ −90.26∗∗∗ 7.38∗∗∗ 3.24∗∗∗ −91.14∗∗∗ 484

(Continued)
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Table 5. (Continued)

Weighted Div. CDX IG CDX HY Index weighted CDS
Leverage Yield (%) υ |q

T
| w υ |q

T
| w υ |q

T
| w Obs.

Panel B: global portfolios (Continued)
Post-crisis sample (2010-2020)

S&P 500 Value 0.29 2.69 3.93∗∗∗ 0.29∗∗ −52.91∗∗∗ 3.98∗∗∗ 0.33∗ −55.73∗∗∗ 4.36∗∗∗ 0.46∗∗∗ −71.29∗∗∗2,705
S&P 500 Growth 0.16 1.62 10.55∗∗∗ 1.72 −87.09∗∗∗ 11.09∗∗∗ 1.77 −87.44∗∗∗ 12.68∗∗∗ 1.80∗∗∗ −93.56∗∗∗2,705
S&P 400 Mid Cap 0.22 1.75 5.75∗∗∗ 0.49∗∗ −74.93∗∗∗ 6.22∗∗∗ 0.55∗ −77.31∗∗∗ 25.87∗∗∗ 0.82∗∗∗ −79.53∗∗∗2,705

Median of index-year samples (2008-2020)
S&P 500 Value 0.30 2.76 2.05∗∗∗ 0.25∗∗ −51.47∗∗∗ 2.54∗∗∗ 0.28∗ −60.27∗∗∗ 2.78∗∗∗ 0.43∗∗∗ −71.67∗∗∗ 245
S&P 500 Growth 0.16 1.58 7.38∗∗∗ 1.81∗∗ −85.13∗∗∗ 9.89∗∗∗ 1.84∗ −86.49∗∗∗ 15.76∗∗∗ 1.92∗∗∗ −93.74∗∗∗ 245
S&P 400 Mid Cap 0.22 1.78 4.59∗∗∗ 0.65∗∗ −76.43∗∗∗ 5.10∗∗∗ 0.70∗ −80.28∗∗∗ 7.67∗∗∗ 1.10∗∗∗ −82.41∗∗∗ 245

Panel C: sector portfolios (2008-2020)
S&P Banks 0.68 2.62 1.87∗∗∗ 0.43∗∗ −48.93∗∗∗ 1.62∗∗∗ 0.78∗∗∗ −61.64∗∗∗ 1.93∗∗∗ 0.39∗∗ 29.01 2,943
S&P Financials 0.56 2.23 1.52∗∗∗ 0.07 −48.88∗∗ 1.26∗∗∗ 0.13 −56.70∗∗∗ 1.20∗∗∗ 0.15∗ −26.43 3,189
S&P Utilities 0.43 3.93 1.09∗ 0.04 −9.35 0.89∗∗∗ 0.09 −21.10 1.30∗∗∗ 0.44∗∗∗ −40.15∗∗ 3,189
S&P Real Estate 0.31 3.77 3.21∗∗∗ 0.37∗∗ −83.09∗ 2.53∗∗∗ 0.40∗∗∗ −86.68∗∗ 2.22∗∗∗ 0.52∗∗∗ −74.96∗∗∗2,953
S&P Communications 0.31 5.18 0.68∗∗∗ 0.06 −58.51 0.55∗∗∗ 0.07 −63.52∗∗∗ 0.94 0.10 −49.68 2,953
S&P Industrials 0.26 2.28 3.63∗∗∗ 0.50 −72.50∗∗∗ 3.14∗∗∗ 0.79∗∗ −76.34∗∗∗ 3.75∗∗∗ 1.17∗∗∗ −66.97∗∗∗3,189
S&P Materials 0.23 2.29 2.57∗∗∗ 0.16∗∗ −84.29∗∗∗ 2.18∗∗∗ 0.27∗∗∗ −86.50∗∗∗ 3.06∗∗∗ 0.29∗∗∗ −88.62∗∗∗2,815
S&P Cons. Discr. 0.19 1.51 8.94∗∗∗ 1.93 −84.13∗∗∗ 8.22∗∗∗ 2.48 −86.76∗∗∗ 8.79∗∗∗ 2.74∗ −84.75∗∗∗3,189
S&P Cons. Staples 0.17 2.82 3.70∗∗∗ 0.26 −74.01∗∗∗ 3.38∗∗∗ 0.48∗ −79.09∗∗∗ 5.08∗∗∗ 0.59∗ −89.21∗∗∗2,121
S&P Energy 0.17 2.88 2.61∗∗∗ 0.71∗ −94.33∗ 2.60∗∗∗ 1.05 −95.15 3.79∗∗∗ 0.91∗∗∗ −87.84∗ 3,189
S&P Healthcare 0.16 1.91 7.23∗∗∗ 1.01 −87.45∗∗∗ 6.69∗∗∗ 1.42 −88.43∗∗∗ 11.44∗∗∗ 1.66 −91.93∗∗∗3,189
S&P Technology 0.09 1.33 13.69∗∗∗ 3.40 −97.05∗∗∗ 13.80∗∗∗ 4.19 −97.57∗∗∗ 16.04∗∗∗ 4.25 −98.54∗∗∗3,189

Panel D: correlations (index-year samples, 2008-2020)
Weighted leverage 1.00∗∗∗ 0.36∗∗∗ −0.36∗∗∗ −0.34∗∗∗ 0.73∗∗∗ −0.39∗∗∗ −0.32∗∗∗ 0.70∗∗∗ −0.30∗∗∗ −0.36 0.80∗∗∗ 217
CDX IG 0.07 0.08 0.15∗ 0.28∗∗∗ −0.17∗ −0.03 0.27∗∗∗ −0.08 −0.05 0.33∗∗∗ 0.04 217
CDX HY 0.09 0.17∗ 0.10 0.26∗∗∗ −0.15∗ −0.06 0.23∗∗∗ −0.07 −0.05 0.29∗∗∗ 0.04 217
Weighted CDS 0.25∗∗∗ 0.26 −0.14∗ −0.09 −0.02 −0.22∗∗ −0.10 0.03 −0.17∗ −0.06∗ 0.14∗ 217
Dividend yield 0.36∗∗∗ 1.00∗∗∗ −0.30∗∗∗ −0.40∗∗∗ 0.30∗∗∗ −0.31∗∗∗ −0.41∗∗∗ 0.33∗∗∗ −0.24∗∗∗ −0.40∗∗∗ 0.26∗∗∗ 217
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the leverage spectrum. For example, the average q
T
stands as low as 0.08 for the Financials

index (leverage 0.56) and as high as 14.51 for the Technology index (leverage 0.09). A similar

decreasing pattern emerges with the score of market efficiency: the less leveraged a business

sector is, the lower its efficiency score. Unsurprisingly, the most leveraged sectoral index

(S&P Banks) is the only one to exhibit a positive score w at 29.01 under the value-weighted

CDS flow of credit risk information. Overall, these low scores of index efficiency confirm our

diagnosis of excess volatility in most sectors. However, due to their heavy reliance on finan-

cial leverage above 0.40, the Banks, Financials, and Utility industry sectors stand out with

statistically significant scores above −50 out of 100 and MRS statistics close to zero. This

finding seems robust and consistent across every aggregated flow of credit risk information.

Panel D reports correlations between our efficiency measures and the fundamentals of

U.S. stock indices. We estimate correlations based on index-year samples to avoid small-

sample issues due to the relatively low number of entire index samples. The first row shows

a consistent negative (resp. positive) correlation around −0.3 (resp. 0.70) between the MRS

statistic |q
T
| (resp. the efficiency score w) and index value-weighted leverage. As a result,

this first row crystallizes a key finding of the paper: stock index efficiency correlates with

aggregated leverage. To a lesser extent, we notice a similar effect of the dividend yield and

the value-weighted CDS level on stock index efficiency.

5. Robustness tests

To ensure that our modeling choices do not condition our findings, we have run an

extensive battery of robustness tests, which are detailed below.

5.1 Robustness to the equity-credit elasticity specification

We first address the concern that the economic proxy used for the equity-credit elasticity

might bias the firm-level findings of Section 4. In Appendix A, our theoretical analysis shows

that the equity-credit elasticity should be an increasing function of firm leverage. Thus, our
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baseline implementation of the perfect-foresight stock price p∗t relies on the adimensional

debt-to-asset ratio as a proxy for ε (see Section 3.3). However, because of the presence of

the ε multiplier (leverage) in front of the CDS returns (see Equation (B1) of Proposition 3),

firm leverage is liable to inflate the variance of p∗t and deflate variance ratios. To investigate

the robustness of our results, we report two alternative specifications for ε.

The firm’s CDS level is the first alternative proxy we consider, as in Acharya and John-

son (2007). This proxy significantly correlates with the debt-to-asset ratio (correlation 0.46).

The second alternative proxy is a model-free estimate of the realized equity-credit elasticity

obtained by regressing log-CDS returns on log-equity returns on a 6-month rolling window.

This proxy incurs sampling noise but has the benefit of remaining agnostic about the theo-

retical relation between percentage changes in stock prices and percentage changes in CDS

spreads.

Figure 4 shows the distribution of the variance ratio υ̂i,t estimated by firm-years over

2008-2020. It should be compared to Panel (b) of Figure 3. Panel (a) uses the re-scaled CDS

par spread as a proxy for ε (i.e., εi,t = 100×CDSi,t). Similar to our baseline implementation,

excess volatility tends to decrease with financial leverage and disappear in the most leveraged

quintiles. Panel (b) uses a daily estimate for ε calculated using a rolling 6-month period.21

Although the rolling estimate ε̂i,t can be noisy, the decreasing pattern of υ̂i,t with firm

leverage is confirmed. Since ε̂i,t has no built-in linkage with firm leverage, we consider the

decline of υ̂i,t along with leverage as an unambiguous confirmation of our findings.

To further confirm the robustness of our findings, we investigate the determinants of

the variance ratio in the cross-section of firms through a panel regression, whose results are

reported in the Online Appendix E.1. The results confirm that the negative relationship

between the log variance ratio and firm leverage is highly significant for the two previous

alternative specifications of ε.
21The calculation is given by ε̂i,t = cov[∆ ln(CDSi,t),∆ ln(Pi,t)]/var[∆ ln(Pi,t)]).
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Figure 4. Robustness analysis: variance ratios with alternative proxies of ε

These boxplots compare distributions of the variance ratio υ across leverage percentiles of firm-years,
where εi,t is proxied by 100 × CDSi,t (Panel a) or estimated using a rolling 6-month period as
cov[∆ ln(CDSi,t),∆ ln(Pi,t)]/var[∆ ln(Pi,t)] (Panel b). In the first stage, we sort the 3,608 firm-years into
quintiles based on the firm-year’s average annual leverage, Q1 being the quintile with the smallest leverage.
In the second stage, we compute for each firm-year (i, t) the variance ratio υ̂i,t. Sample period: 2008:01 to
2020:12. Data source: Thomson Reuters.
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(b) Elasticity ε estimated on a rolling basis
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5.2 Robustness to business sectors and credit rating changes

A potential concern with our results is that highly leveraged firms in the financial industry

might bias the empirical findings of Section 4. As a preliminary robustness analysis, we

repeat our efficiency tests on the entire sample period (2008-2020) without the Financials

sector. We find results qualitatively similar to those in Table 4, confirmed in the two sub-

sample periods (2008-2009 and 2010-2020). These results suggest a limited impact from the

Financials business sector, and we do not report them for brevity.

As a more general and rigorous robustness check, we investigate the determinants of the

different metrics of market efficiency used previously (namely, the variance ratio υ, the MRS

statistic |q|, and the efficiency score w) in the cross-section of firms through panel regressions.

For that purpose, we collect the statistics υ̂i,t, |q̂i,t| and ŵi,t estimated in Table 4 for each firm

i and each year t (2008 6 t 6 2020). We then estimate the three following panel regression
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models with firm- and year-fixed effects:

Ŷi,t = β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock
i,t + β5LVGi,t × VOLStock

i,t

+ β6LOGSIZEi,t + β7DIVi,t + β8VOLCDS
i,t + β9VOLS&P

t + β10VIXt + β11RATE(10)
t

+ β12(RATE(10)
t − RATE(2)

t ) + β13NOTCH DOWNi,t + β14NOTCH UPi,t

+
8∑
j=1

γjRATING(j)
i,t +

11∑
j=1

δjSECTOR(j)
i +

∑
i,t

FEi,t+ εi,t,

(7)

where Ŷi,t is one of the three variables of interest (i.e., ln(υ̂i,t), ln(|q̂i,t|), ŵi,t) described above

for firm i and year t, FEi,t denotes firm- and year-fixed effects, and εi,t are i.i.d. disturbances.

Here, LVGi,t (resp. CDSi,t, LOGSIZEi,t, DIVi,t, VOLStock
i,t , VOLCDS

i,t ) is the average financial

leverage (resp. CDS level, logarithm of market capitalization, dividend yield, 1-year idiosyn-

cratic stock volatility, 1-year CDS volatility) of firm i over year t. In addition,VOLS&P
t and

VIXt denote the standard deviation of the returns on the S&P 500 index and the average

VIX level during the (i, t) firm-year sample, respectively. Finally, RATE(2)
t (resp. RATE(10)

t )

measures the 2-year (resp. 10-year) U.S. Treasury note rate and controls for the average

short-term (resp. long-term) interest rate over year t. To control for the confounding effect

of the firm’s credit rating (resp. business sector), we include RATING(j)
i,t (resp. SECTOR(j)

i )

as dummy variables for the average S&P credit rating class (resp. business sectors) of firm

i over year t.22 The dummy variable NOTCH DOWNi,t (resp. NOTCH UPi,t) captures the

occurrence of any S&P rating notch downgrade (resp. upgrade) for firm i over year t.

We report the results of these regressions using the log-variance ratio ln(υ̂i,t) as the re-

sponse variable in Table 6. For brevity, the results for the MRS variance spread (ln(|q̂i,t|))

and the W88 efficiency score (ŵi,t) are reported and discussed in the Online Appendix E.2.

The results confirm that the negative relationship between the log variance ratio and firm

leverage in Table 3 is highly significant in all specifications, i.e., including macroeconomic
22To calculate the average credit rating class on each firm-year, we first convert prevailing rating notches

on each trading day to a numerical scale between 0 and 20. Then, we compute the average and assign it to
the closest S&P credit rating class.
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Table 6. Robustness analysis: determinants of υ̂ in the cross-section of firms

This table reports estimates of the panel regression (7):

ln(υ̂i,t) = β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock
i,t + β5LVGi,t ×VOLStock

i,t + β7VOLCDS
i,t

+ β8VOLS&P
t + β9VIXt + β10RATE(10)

t + β11(RATE(10)
t − RATE(2)

t ) + β12NOTCH DOWNi,t

+ β13NOTCH UPi,t +
∑8

j=1 γjRATING(j)
i,t +

∑11
j=1 δjSECTOR(j)

i +
∑

i Firm FEi +
∑

t Year FEt+ εi,t,

where υ̂i,t are firm-year variance ratios. t-statistics are calculated via robust standard errors clustered by
firm to correct for heteroskedasticity. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and 5%
levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Variable (A) (B) (C) (D)

LVG −4.792∗∗∗(−15.52) −4.785∗∗∗(−15.48) −4.805∗∗∗(−15.21) −5.718∗∗∗(−12.21)
CDS −0.002∗∗∗ (−4.92) −0.002∗∗∗ (−4.94) −0.002∗∗∗ (−4.89) 0.000 (−0.25)
LVG× CDS 0.003∗∗∗ (6.19) 0.003∗∗∗ (6.22) 0.003∗∗∗ (6.12) 0.001 (0.93)
VOLStock 2.892∗∗∗ (7.01) 2.892∗∗∗ (7.01) 2.919∗∗∗ (7.07) 3.246∗∗∗ (5.10)
LVG×VOLStock 0.393 (0.78) 0.381 (0.76) 0.338 (0.67) 0.617 (0.80)
LOGSIZE 0.236∗∗∗ (3.65) 0.236∗∗∗ (3.64) 0.228∗∗∗ (3.50) −0.147∗∗ (−3.06)
DIV 0.011∗ (2.02) 0.011∗ (2.08) 0.011∗ (2.15) −0.010 (−1.12)
VOLCDS −2.349∗∗∗(−20.11) −2.354∗∗∗(−20.12) −2.363∗∗∗(−20.15) −3.162∗∗∗(−13.89)
VOLS&P500 9.165∗∗∗ (12.91) 9.148∗∗∗ (12.88) 9.147∗∗∗ (12.87) −2.342 (−0.48)
VIX −0.105∗∗∗ (−9.37) −0.104∗∗∗ (−9.32) −0.104∗∗∗ (−9.31) 0.080 (0.92)
RATE(10) −0.214∗∗∗ (−6.50) −0.212∗∗∗ (−6.43) −0.214∗∗∗ (−6.48) 1.293 (1.09)
RATE(10)-RATE(2) −0.023 (−0.64) −0.026 (−0.73) −0.031 (−0.88) −1.811 (−1.37)
NOTCH DOWN 0.016 (0.31) 0.021 (0.41) −0.019 (−0.30)
NOTCH UP 0.083 (1.37) 0.088 (1.45) 0.111 (1.65)
RATING AAA 0.169 (0.28) 1.086∗∗ (2.84)
RATING AA −0.278 (−0.51) 0.391 (1.21)
RATING A −0.340 (−0.66) 0.127 (0.48)
RATING BBB −0.427 (−0.84) −0.232 (−0.92)
RATING BB −0.443 (−0.89) −0.257 (−0.95)
RATING B −0.323 (−0.63) −0.403 (−1.32)
RATING CCC −0.459 (−0.83) −0.479 (−1.42)
FINANCIALS 0.469 (1.87)
UTILITIES −0.379 (−1.79)
CONS. NON-CYC. −0.096 (−0.56)
REAL ESTATE −0.323 (−1.56)
CONS. CYC. 0.162 (1.07)
INDUSTRIALS 0.164 (1.05)
BASIC MAT. 0.066 (0.34)
TECHNOLOGY 0.440∗ (2.26)
HEALTHCARE 0.045 (0.25)
ENERGY −0.030 (−0.17)

Clustered SE Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes No
Year fixed effects No No No Yes
R2 0.289 0.290 0.291 0.526
Obs. (firm-years) 3,605 3,605 3,605 3,605

35



control variables and dummy variables for business sectors and credit rating changes. Specif-

ically, the leverage coefficient β̂1 in Equation 7 is significant at the 0.1% threshold in every

specification tested. The absolute CDS level is significant in some, but not all, specifications.

However, the coefficient β̂2 is close to zero, suggesting that the absolute CDS level has lit-

tle influence on market efficiency. A similar result holds for the leverage-CDS cross-impact

(measured by β̂3). Unsurprisingly, the coefficients of the idiosyncratic equity volatility and

aggregate market volatility are significantly positive, suggesting that efficiency deteriorates

with excess volatility for the stock. Conversely, CDS volatility and VIX implied volatility

both appear to be associated with improved stock market efficiency (β̂7, β̂9 > 0).

Tables 8 and 9 in the Online Appendix E.1 report regression results using the MRS

log-variance spread and the W88 efficiency score. The main takeaway from these additional

regressions is the positive association between firm leverage and efficiency, i.e., an increase

in firm leverage continues to be significantly negatively (resp., positively) associated with

the MRS spread (resp., W88 score) under all regression specifications. For brevity, we focus

on the significance of other individual determinants under the most general specification

that controls for business sectors (i.e., column D). For the MRS spread, neither the CDS

level nor its interaction with firm leverage is significant, while CDS volatility and implied

volatility seem to be negatively associated with market efficiency. For the W88 score, several

of the explanatory variables in Equation (7) are significant, but the key coefficient β̂1 remains

positive and highly significant.

5.3 Robustness to the MRS orthogonality test specification

The baseline implementation of the MRS orthogonality test reported in Section 4 raises

potential concerns regarding the specifications used for the naive forecast P o
t (see Sec-

tion C.2). Specifically, our orthogonality tests might be sensitive to the equity risk premium

p and the dividend assumptions chosen to estimate P o
t .

To investigate the robustness of our results regarding these two concerns, we report an
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alternative implementation for the MRS orthogonality test. First, we consider a more robust

specification of the naive forecast P o
t based on the annual moving average over the last five

years of dividends, that is, 20 quarterly dividend amounts. Second, we vary the equity risk

premium p used in our tests. The detailed results are discussed in Online Appendix E.3.

They show that the main estimate (β̂1) in the panel regression (7) remains statistically

significant and negative, confirming that the robust MRS statistic consistently decreases

along with firm leverage.

5.4 Robustness to the perfect-foresight implementation

The baseline implementation of the variance ratio and MRS orthogonality test reported

in Section 4 raises concerns regarding the specification used for the perfect-foresight price

P ∗t→T . Our implementation of P ∗t→T given by Equation (C2) might be dependent on the

time horizon T . Consequently, our variance ratios and orthogonality tests might be overly

sensitive to the level of the terminal stock price P
T
used to back out P ∗t→T .

To investigate the robustness of our results regarding this concern, we report an alterna-

tive implementation for the MRS orthogonality test. We use a robust version of the variance

spread statistic q
T
to avoid being overly dependent on a single value of the market price

at the time horizon T . Specifically, we consider multiple trajectories of P ∗t→T originating at

different terminal dates and use an average trajectory using percentiles of the terminal dis-

tribution of realized stock prices. The detailed results are discussed in Online Appendix E.4.

The results are qualitatively similar to our main results.

6. Conclusions

This paper extends econometric tests developed in the market efficiency literature to firms

subject to default risk. This novel approach exploits the information contained in single-name

CDS and credit indices, using a large dataset of S&P 500 firms over an extended time frame

(2008–2020). Our main finding using various efficiency tests is that market efficiency at the
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firm level improves with firm leverage. In contrast, our tests show distinct macro-inefficiency

for large-cap U.S. stock indices, i.e., low-efficiency scores except for highly leveraged sector

indices such as Banks, Financials, or Utilities.

Our findings suggest that an active CDS market increases stock market efficiency at the

firm level. We interpret this finding in the context of the informational advantage of CDS

markets documented in the literature. This advantage is more pronounced for firms experi-

encing higher default risk or leverage: CDS contracts are more informative about negative

information because of their asymmetric payoff; initiation of CDS trading attracts relation-

ship banks, informed lenders, and other insiders in the market; CDS trading conveys valuable

information before earnings announcements; and CDS trading reduces equity analysts’ op-

timism. We conjecture that the transmission of information from CDS to equity is more

efficient for leveraged firms as the CDS market becomes more conducive to cross-market

arbitrage.

Our findings not only contribute to the empirical literature but also align with key insights

from the recent theoretical literature on Samuelson’s dictum, which suggests that active

investors reduce micro-inefficiencies more than they do macro-inefficiencies (e.g., Garleanu

and Pedersen, 2022; Glasserman and Mamaysky, 2023). Indeed, our findings support this

notion, as specialized CDS market participants have stronger incentives to correct micro

inefficiencies through single-name credit-equity arbitrage.
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Appendix A. The equity-credit elasticity in Merton’s (1974) model

In this appendix, we provide a theoretical justification for the choice of a simple linear

function of firm leverage as a proxy for the elasticity ε of the stock price P with respect to

the CDS par spread λ, defined by the relationship P = λ−ε. Under Merton’s (1974) model,

the main state variable is the firm value, V . The equity-credit elasticity can be expressed

as:

ε = − λ
P

∂P

∂λ
= −

(
1
P

∂P

∂V

)/(
1
λ

∂λ

∂V

)
. (A1)

First, we use the relation σP = ∂P
∂V
σvV (see equation 3.b in Merton, 1974), where σv is the

firm value volatility and σ is the stock price volatility, to obtain:

1
P

∂P

∂V
= σ

σvV
. (A2)

Second, without loss of generality, we can assimilate the CDS par spread λ to Merton’s (1974)

default probability N(−d2) at horizon T . Here N(·) is the standard normal cumulative

distribution function, d2 is given by (ln(V/D) + rT − σ2
vT/2)/(σv

√
T ), and D is the firm’s

nominal amount of debt. Differentiating N(−d2) with respect to V , we obtain:

1
λ

∂λ

∂V
= −N ′(−d2)
N(−d2)σvV

√
T
. (A3)

Substituting Equations (A2) and (A3) into Equation (A1) yields:

ε = σ
√
T
N(−d2)
N ′(−d2) . (A4)

It is now easy to show that ε increases with firm leverage. Using N ′(x) = e−x
2/2/
√

2π

and N ′′(x) = −xN ′(x) to differentiate with respect to D yields:

∂ε

∂D
= σ
√
T ×

(
−∂d2

∂D

)
× [N ′(−d2)]2 −N(−d2)d2N

′(−d2)
[N ′(−d2)]2 . (A5)
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Figure 5. Equity-credit elasticity vs. firm leverage

The figure plots the elasticity ε of the equity value P with respect to the default probability λ under the
Merton (1974) model. Three values for firm-value volatility σv are considered: 12.5%, 25% and 37.5%. The
debt-to-asset ratio D/V is varied in order to generate different values of the default probability and equity
value. Pricing assumptions: T = 10 years, r = 2%, σ = 30%.
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Substituting ∂d2
∂D

= −1/(Dσv
√
T ) and using the fact that 1 + xN(x)/N ′(x) > 0 for all x, we

obtain finally:
∂ε

∂D
= σ

Dσv

[
1− d2

N(−d2)
N ′(−d2)

]
> 0. (A6)

Figure 5 plots the equity-credit elasticity ε for different hypotheses of firm value volatility

σv. It confirms that it is reasonable to proxy ε by a linear function of the debt-to-asset ratio,

D/V , as we do in Section 3.3.

Appendix B. The perfect-foresight price under default risk.

The following result provides a recursive construction of the perfect-foresight price p∗t
under default risk based on Campbell and Shiller’s (1988) log-linearization of stock returns.

Proposition 3 (Perfect-foresight price). The firm’s perfect-foresight log stock price is a

solution of the following recursive equation:

p∗t = ρ1D(t)p∗t+1 − rt+1 + εt+1∆ ln(λt+1) + (1− ρ)d̃t+1 + k1D(t), (B1)
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where:

• D denotes the set of cum-dividend dates t such that the firm pays a discrete dividend

Dt+1 > 0 over the period ]t; t+ 1];

• d̃t := dt if t ∈ D and 0 otherwise;

• rt+i denotes the risk-free rate of interest over the (t+ i)-th period;

• εt+i denotes the firm’s equity-credit elasticity over the (t+ i)-th period;

• λ
t+i denotes the firm’s log default intensity over the (t+ i)-th period;

• ρ := 1/(+ exp(δ̄) 6 1 is a discount factor determined by the historical average δ̄ of the

log dividend-price ratio

• k := ln(1 + eδ̄)− (1− ρ)δ̄ is a constant.

Assuming the transversality condition limT→∞ ρ
Tp∗

t+T
= 0 to rule out the existence of rational

bubbles, the perfect-foresight log stock price is given at any time t by:

p∗t = k

1− ρ +
∞∑
i=1

p∗t,i, (B2)

where p∗t,i := ρni
(
−rt+i + εt+i∆ ln(λt+i) + (1− ρ)d̃t+i

)
.

Proof. We consider the stock price of a defaultable firm. Let D denote the set of cum-

dividend dates t such that the firm pays a discrete dividend Dt+1 > 0 over the period

]t; t+ 1]. The one-period, gross return from time t to time t+ 1 is given by:

1 +Rt+1 = Pt+1 +Dt+1

Pt
, (B3)

where Pt and Pt+1 denote start-of-period and end-of-period stock prices. Let ht+1 := ln(1 +

Rt+1) denote the ex-post, one-period log-return from time t to time t+ 1. Taking logarithms

on both sides of (B3) gives:

ht+1 = pt+1 − pt + ln(1 + exp(δt+1)), (B4)
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where δt+1 := ln(Dt+1/Pt+1) is the log dividend-price ratio. As in Campbell and Shiller’s

(1988) log-dividend price model, we approximate (B4) by a first-order Taylor series expansion

around the average δ̄ of the log dividend-price ratio:23

(∀t ∈ D) ht+1 ≈ pt+1 − pt + ln(1 + exp(δ̄)) + exp(δ̄)
1 + exp(δ̄)

(δt+1 − δ̄). (B5)

Define ρ := 1/(1+exp δ̄) such that exp(δ̄)/(1+exp δ̄) = 1−ρ. Let also k denote the quantity

ln(1 + exp δ̄)− (1− ρ)δ̄. With these new notations, the log-linear return approximation (B5)

simplifies into:

(∀t ∈ D) pt ≈ ρpt+1 − ht+1 + (1− ρ)dt+1 + k. (B6)

Solving forward for the log-price:

(∀t ∈ D) pt ≈ ρTpt+T −
t+T∑

s>t, s∈D
ρs−t−1 (hs − (1− ρ)ds − k) . (B7)

We rule out rational bubbles by imposing limT→∞ ρ
Tpt+T = 0. We have the asymptotic

expression which is valid only for cum-dividend dates in D:

(∀t ∈ D) pt ≈
∞∑

t<s, s∈D
ρs−t−1 (−hs + (1− ρ)ds + k) . (B8)

Following the theoretical approach described in Section 2.1, we use the power parameteriza-

tion to express the ex-post log-return as follows:

hs = rs − εs∆ ln(λs). (B9)

where ε is the credit-equity elasticity, λ is the firm’s default intensity (proxied by the firm’s

CDS par spread), and r is the risk-free rate. We can then substitute the ex-post theoretical
23See Engsted, Pedersen, and Tanggaard (2012) for the accuracy of Campbell and Shiller’s (1988) Taylor

expansion.
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return (B9) and re-index at a daily frequency:

pt ≈
∞∑
i=1

ρni
(
−rt+i + εt+i∆ ln(λt+i) + (1− ρ)d̃t+i + k1D(t+ i)

)
, (B10)

where ni is the number of discrete dividend dates in D between t and t + i, and d̃t ≡ dt

if t ∈ D and 0 otherwise. Noticing that ∑∞i=1 ρ
ni1D(t + i) = 1/(1 − ρ), and assuming

perfect knowledge of future dividends, future changes in log-default intensities, and future

credit-equity elasticities, we obtain the perfect-foresight price on cum-dividend dates t ∈ D:

p∗t = 1
1− ρ +

∞∑
i=1

ρni
(
−rt+i + εt+i∆ ln(λt+i) + (1− ρ)d̃t+i

)
. (B11)

Finally, we can redefine the perfect-foresight price p∗t outside D by extension of the formula

(B11) for any regular date t ∈ N.

Appendix C. Econometric methodology

In this section, we describe the perfect-foresight-based univariate strategy used to imple-

ment the variance ratio, MRS, and W88 tests formalized in Propositions 1 and 2.

C.1 Implementing the perfect-foresight stock price

In this section, we derive a empirical proxy for the perfect-foresight stock price p∗
t
. This

variable remains unobservable in a finite sample. Following the literature on excess volatility

tests (e.g., Shiller, 1981; Grossman and Shiller, 1981), we use the recursive property of p∗
t

outlined in Proposition 3:

p∗t =
T−1∑
i=1

p∗t,i + ρnT p∗T , (C1)

where n
T

:= ]{s ∈ D | t 6 s < T} denotes the number of discrete dividend dates between

t and time horizon T . By truncating the infinite sum with a terminal price, the following
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proxy for p∗t relies only on in-sample information:

p∗t→T :=
T−1∑
i=1

p∗t,i + ρnT pT , (C2)

where pt denotes the stock market (log) price. In our implementation of p∗t→T , we use for pT

the last closing stock price quoted (i.e., December 31, 2020) in our dataset. For each firm of

the sample, the discount factor ρ is estimated from the historical dividend-price ratio. The

typical S&P 500 firm has an annual dividend yield of 2% over the period 2008-2020, leading

to a typical value of ρ = 0.995 for quarterly dividends.

C.2 Implementing the MRS orthogonality test

Following Mankiw, Romer, and Shapiro (1985, 1991), we introduce a “naive forecast”

P o
t of the perfect-foresight price P ∗t→T := exp(p∗t→T ) that reflects the discounted value of the

infinite stream of future dividends. P o
t reflects the rational forecast obtained when actual

dividends never deviate from a function of their recent realizations, Dt−i. Given the daily

frequency of our dataset, we consider a simple specification based on the annual moving

average over the last four quarterly dividend amounts:

P o
t = 1

rt + p

4∑
i=1

Dt−i. (C3)

We use a discounting rate equal to the long-term risk-free rate (rt) plus an unobservable risk

premium p. In the empirical tests, we use the 10-year Treasury Bill rate as proxy for rt.

To test the null hypothesis of stock market efficiency, we introduce:

q
t,T

:=
(
P ∗t→T − P o

t

Pt

)2
−
(
P ∗t→T − Pt

Pt

)2
−
(
Pt − P o

t

Pt

)2
. (C4)
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We then consider the sample counterpart of Equations (3-4):

q
T

:= T−1
T∑
t=1

q
t,T
. (C5)

According to Proposition 1, the MRS statistic q
T
cannot diverge from zero without generating

market inefficiencies.24 In other words, market efficiency should translate into |q̂
T
| = 0. To

obtain a standard error for the sample mean q̂
T
, we run for each firm the linear regression

q
t,T

= α+ εt, where εt are iid disturbances. This regression model yields robust asymptotic

standard errors corrected for heteroscedasticity and serial correlation (Newey and West,

1987). We then compute the square of the t-statistic α̂/Var(α̂) for the null hypothesis of

market efficiency H0 : α̂ = 0. This two-sided Wald statistic follows a χ2(1) distribution.

C.3 Implementing the W88 variance-bound test

Let VH := E[(p̌t−E[p̌t | Ht−1])2] be the variance of revision in the credit risk forecast and

VI := E[(pt − E[pt | It−1])2] the variance of revision in the optimal forecast produced by the

market. For each firm, we estimate the variance spreadW = VH−VI (see online Appendix E.1

for implementation details). Similarly to West (1988), it will be more convenient to compute

and report the relative variance spread between −100 and 100:

w := 100× VH − VI
max (VH ;VI)

. (C6)

We interpret a negative value of w as revealing excess volatility in the stock market. Con-

versely, w close to 100 indicates a nearly-efficient stock market. In other words, the spread

w can be interpreted as a market efficiency score.
24If q

T
↑ +∞, the two forecast trajectories P ∗

t→T
and P o

t
must move away from each other. In this case,

the market price path cannot uniformly converge toward one of these two forecast trajectories, otherwise
q

T
would tend to zero by construction. Conversely, if q

T
↓ −∞, the market price path must diverge from

at least one of the two forecast trajectories, say P o
t
. In this case, the market price path cannot converge

uniformly toward the other forecast trajectory P ∗
t→T

, otherwise q
T
would also tend to zero by construction.
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Online Appendix

In this online appendix, we provide additional material for “The Informational Role of CDS

in Stock Market Efficiency”, not reported in the main text for brevity.

Appendix D. Mathematical proofs

D.1 Proof of Proposition 1

The optimal and naive forecasts are both in the public information set, so that pt− pot is

measurable for It. By definition of conditional expectations:

E [p∗t (pt − pot )] = E [E[p∗t | It](pt − pot )] , (D1)

which yields the following orthogonality restriction:

E[(p∗t − pt)(pt − pot )] = 0. (D2)

We obtain Equation (3) by squaring the identity p∗t − pot = (p∗t − pt) + (pt − pot ), taking

expectations, and normalizing by the information available at time t.

D.2 Proof of Proposition 2

Following West’s (1988) approach, we insert the recursive dynamics for the perfect-

foresight stock price into the identity p̌t = E[p∗
t
| Ht]:

p̌t = E
[
ρ1D (t)p∗

t+1 − rt+1 + εt+1∆ ln(λt+1) + (1− ρ)d̃t+1 + k1D(t) | Ht

]
= −rt+1 + εt+1∆ ln(λt+1) + (1− ρ)d̃t+1 + k1D(t) + ρ1D (t)E

[
p∗
t+1 | Ht

]
= ρ1D (t)p̌t+1 − rt+1 + εt+1∆ ln(λt+1) + (1− ρ)d̃t+1 + k1D(t)− ρ1D (t)

(
p̌t+1 − E[p∗

t+1 | Ht]
)
,

(D3)
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where we have used the fact the random variables rt , εt∆ ln(λt), and d̃t belong to the infor-

mation set Ht. Let introduce the revision in the credit risk forecast produced by the arrival

of new information during the period:

ět+1 ≡ p̌t+1 − E[p∗
t+1 | Ht] = pt+1 − E

[
E[p∗

t+1 | Ht+1] | Ht

]
= p̌t+1 − E[p̌t+1 | Ht], (D4)

where we have used the tower property of conditional expectations. By recursive substitution

up to order m we obtain:

p̌t =
m∑
j=1

p∗
t,j
−

m∑
j=1

ρnj1D (t+j)ě
t+j + ρnm1D (t+m)p̌t+m , (D5)

where n
j
is the number of discrete dividend dates between t and t+ j. Once again, we rule

out rational bubbles by imposing limm→∞ ρ
nm1D (t+m)p̌t+m = 0. Letting m→∞, we obtain:

p̌t = p∗
t
−
∞∑
j=1

ρnj1D (t+j)ě
t+j . (D6)

An analogous argument with the complete information set It yields :

pt = p∗
t
−
∞∑
j=1

ρnj1D (t+j)e
t+j , (D7)

where et ≡ pt+1 − E[pt+1 | Ht] is the revision in the market forecast due to the arrival of

new information. Notice that the sequence of forecasting revisions {e
t+j}j>0 are orthogonal

to the information set It by optimality of the market price (i.e., E[e
t+j | It] = 0). As a result

2



we have:

Var
 ∞∑
j=1

ρnj1D (t+j)ě
t+j

 = Var
[
p̌t − p∗t

]
= Var

[
p̌t − pt + pt − p∗t

]

= Var [p̌t − pt ] + Var
 ∞∑
j=1

ρnj1D (t+j)e
t+j


> Var

 ∞∑
j=1

ρnj1D (t+j)e
t+j

 . (D8)

To calculate these two variances, we notice that (i) the sequence {ρnj1D (t+j)}
j>0 is absolutely

summable because 0 < ρ < 1, and (ii) {ě
t+j , et+j}j>0 are sequences of uncorrelated random

variables. As a result, we can interchange the variance operator with the infinite summation

to obtain:
∞∑
j=1

ρ2nj1D (t+j)Var
[
ě
t+j

]
>
∞∑
j=1

ρ2nj1D (t+j)Var
[
e
t+j

]
. (D9)

This simplifies into Var
[
ě
t+j

]
> Var

[
e
t+j

]
, which is Equation (5) of Proposition 2.

Appendix E. Econometric Appendix

E.1 Econometric implementation of the variance-bound test

To estimate the variance of the revision in the credit risk forecast, p̌t , we assume that

the credit risk factor εt∆ ln(λt) follows a covariance-stationary AR(q) process. We thus fit

the following model for each firm:

εt+1∆ ln(λt+1) = φ1εt∆ ln(λt) + · · ·+ φqεt−q∆ ln(λt−q) + vt+1 , (E1)

where Φ(L) ≡ I − φ1L − · · · − φqLq is the characteristic polynomial and L is the backshift

operator. Since the perfect-foresight price p∗
t
is an infinite geometrically declining sum of

future variations in credit risk (see Proposition 3), its projection onto Ht is an infinite sum

of conditional expectations. In Appendix E.2, it is shown how to calculate the sum of this

3



convergent series explicitly as a function of past history (Hansen and Sargent, 1980). The

credit risk forecast p̌t is thus given explicitly (see Equation (E14)) in terms of current and

past values of variations in credit risk:

p̌t = 1
φ

εt∆ ln(λt) +
q−1∑
k=1

 q∑
j=k+1

φj

 ε
t−k∆ ln(λ

t−k)
 , (E2)

where φ := Φ(1) = 1− φ1 − · · · − φq . The period-to-period revisions in the forecast p̌t are as

follows:

p̌t − E[p̌t | Ht−1] = φ−1εt∆ ln(λt), (E3)

and they are those of the credit risk variable εt∆ ln(λt). Note that by considering only the

credit risk component in the innovations, we adopt a conservative approach which underes-

timates the variability of in the revisions of the forecast p̌t . It is straightforward to take into

account the interest rate and dividend components in Equation (E3) on top of the credit

risk component.1 An estimator of the variance of the credit risk innovations is the residual

standard error σ2
v from regression (E1) weighted by the projection coefficient φ−1, and a

similar result holds for the interest rate variable. As a result, our estimate of this variance

is given by σ2
v/φ̂

2.

To estimate the variance in the revision of the optimal forecast produced by the market,
1The results of Appendix E.2 apply without modification to the interest rate variable, rt, and the log-

dividend, dt. For example, assume that the interest rate rt variable jointly follows a covariance-stationary
ARIMA(q; s; 0) process: ∆sr

t+1 = ψ1∆sr
t
+ · · ·+ψ

q
∆sr

t−q
+w

t+1 , where Ψ(L) ≡ I−ψ1L−· · ·−ψq
Lq is the

characteristic polynomial and ∆s ≡ (1−L)s. The conditional expectation of p̌
t
on current and past values of

interest rate levels would be Ψ−1
(
r

t
+
∑q−1

k=1

(∑q
j=k+1 ψj

)
r

t−k

)
, where Ψ ≡ Ψ(1) = 1−ψ1 −· · ·−ψq

. The
period-to-period revisions in p̌

t
would thus include an interest rate component, and Equation (E3) would be

extended as: p̌
t
− E[p̌

t
| Ht−1] = Φ−1ε

t
∆ ln(λ

t
) + Ψ−1r

t
. The West statistic would be calculated as W ≡

σ2
vΦ̂−2 + σ2

wΨ̂−2 − σ̂2
uβ̂
−2, leading to a higher probability of rejecting the null hypothesis H0 : Ŵ > 0. As a

result, it is more conservative not to include interest rate and dividend variability in the basic implementation
of our variance-bound test.

4



we follow the theory (see Equation (B6)) and run for each firm the regression:

pt = α + βpt+1 + γd̃t+1 + ut+1 , (E4)

where ut+1 are iid disturbances. The inclusion of the log-dividend d̃t has the effect of adjusting

market price innovations due to dividend decreases. The correlation of pt+1 with the error

term ut+1 precludes the use of OLS estimation. Consequently, we estimate Equation (E4)

by instrumental variables using the past history of credit risk as instruments, that is, the

variables in Ht. As a result, our estimate of the variance of market price innovations is given

by σ̂2
u/β̂

2.

To measure the excess variance produced by market prices (σ2
u) compared to the funda-

mentals (σ2
v), we compute the following variance spread for each firm:

W := σ2
vφ̂
−2 − σ̂2

uβ̂
−2. (E5)

The null hypothesis of market efficiency is H0 : Ŵ > 0. To estimate the standard error of

Ŵ , we estimate Equations (E2) and (E4) jointly by the multi-equation GMM method (e.g.,

Hayashi, 2000). We thus obtain a variance-covariance matrix V for the vector of estimates

θ := [φ̂1, · · · , φ̂q, β̂, σ̂2
u, σ̂

2
v ] that is robust to heteroskedasticity and autocorrelation in the

credit risk innovations (Hansen, 1982; Newey and West, 1987). Since W is a nonlinear

function f(θ), its variance can be obtained in standard fashion by the delta method as

Var (W ) = [∂f/∂θ]′V [∂f/∂θ] .

Similarly to West (1988), it will be more convenient to compute and report the relative

variance spread comprised between −100 and 100:

w := 100× σ2
vφ̂
−2 − σ̂2

uβ̂
−2

max
(
σ2
vφ̂
−2; σ̂2

uβ̂
−2
) . (E6)

We interpret a negative value as indicating excess volatility in the stock market, and a value

5



of w close to 100 as pointing out a nearly-efficient stock market. In other words, the spread

w can be interpreted as a market efficiency score.

E.2 Calculation of p̌t

We follow Hansen and Sargent’s (1980) approach. The goal is to express the credit

risk forecast p̌t in terms of current and past values of variables in Ht. we can insert the

perfect-foresight log-price (B11) into the identity p̌t = E[p∗
t
| Ht] to obtain:

p̌t =
∞∑
i=1

E
[
ε
t+i∆ ln(λ

t+i) | Ht

]
. (E7)

We first assume that the series εt∆ ln(λt) is covariance stationary and has a q-th order

vector autoregressive representation ARIMA(q, 0, 0). Let Φ(L) ≡ I − φ1L − · · · − φqL
q

the characteristic polynomial of the process εt∆ ln(λt) so that Φ(L)[εt∆ ln(λt)] = vt, and

let Φ−1(L) ≡ ∑∞
j=0 φ

′
jL

j denote its MA(∞) representation. To transform the conditional

expectations in (E7) as functions of variables in the information subset Ht, we use for all

i > 0:

E
[
ε
t+i∆ ln(λ

t+i) | Ht

]
= E

[
L−i(εt∆ ln(λt)) | Ht

]
= E

[
L−i(Φ−1(L)vt) | Ht

]
= Φ−1(L)

Li
vt.

(E8)

Inserting Equation (E8) into Equation (E7) and interchanging orders of summation yields:

p̌t =
∞∑
i=1

∞∑
j=i

φ′jL
j−ivt =

∞∑
j=0

φ′jL
j

j∑
i=0

L−ivt =
∞∑
j=0

φ′jL
j 1− L−j−1

1− L−1 vt

= Φ−1(L)− L−1Φ−1(1)
1− L−1 vt. (E9)

Inserting vt = Φ(L)[εt∆ ln(λt)] into Equation (E9) yields:

p̌t = I − L−1Φ−1(1)Φ(L)
1− L−1 [εt∆ ln(λt)] (E10)
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We now notice that the polynomial Φ(L)
I−L−1 may be simplified by polynomial division:

−φqLq + · · · − φ1L+ I

I − L−1 = −φqLq + −(φq−1 + φq)Lq−1 + · · · − φ1L+ I

I − L−1

= −φqLq − (φq−1 + φq)Lq−1 + −(φq−2 + φq−1 + φq)Lq−2 + · · · − φ1L+ I

I − L−1

= · · ·

= −φqLq − (φq−1 + φq)Lq−1 − · · · − (φ1 + · · ·+ φq)L+ I − φ1I − · · · − φqI
I − L−1

= −
q∑

k=1

 q∑
j=k

φj

Lk + Φ(1)I
I − L−1 . (E11)

Thus we have:

L−1Φ−1(1) Φ(L)
1− L−1 = −Φ−1(1)

q∑
k=1

 q∑
j=k

φj

Lk−1 + L−1

I − L−1 . (E12)

and then:

I − L−1Φ−1(1)Φ(L)
1− L−1 = Φ−1(1)

q−1∑
k=0

 q∑
j=k+1

φj

Lk + I

= Φ−1(1)
q−1∑
k=0

 q∑
j=k+1

φj

Lk + Φ(1)I
 . (E13)

We obtain the following representation for the credit risk forecast in terms of current and

past values of εt∆ ln(λt):

∞∑
i=1

E
[
ε
t+i∆ ln(λ

t+i) | Ht

]
= 1

Φ(1)

I +
q−1∑
k=1

 q∑
j=k+1

φj

Lk
 [εt∆ ln(λt)]. (E14)

E. Additional robustness results

E.1 Robustness to equity-credit elasticity specification

In this section, we report additional robustness analyses to investigate the sensitivity

of our results to the specification of the equity-credit elasticity. Table 7 reports the cross-

7



Table 7. Robustness analysis: determinants of υ̂ with alternative proxies of ε

This table reports estimates of the panel regression (7):

ln(υ̂i,t) = β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock
i,t + β5LVGi,t ×VOLStock

i,t + β7VOLCDS
i,t

+ β8VOLS&P
t + β9VIXt + β10RATE(10)

t + β11(RATE(10)
t − RATE(2)

t ) + β12NOTCH DOWNi,t

+ β13NOTCH UPi,t +
∑8

j=1 γjRATING(j)
i,t +

∑11
j=1 δjSECTOR(j)

i +
∑

i Firm FEi +
∑

t Year FEt+ εi,t,

where υ̂i,t are firm-year variance ratios. The equity-credit elasticity εi,t is proxied by 100 × CDSi,t (Panel
a) or estimated using a rolling 6-month period as cov[∆ ln(CDSi,t),∆ ln(Pi,t)]/var[∆ ln(Pi,t)] (Panel b).
t-statistics are calculated via robust standard errors clustered by firm to correct for heteroskedasticity. ∗∗∗,
∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. The sample period is
2008:01 to 2020:12. Data source: Thomson Reuters.

Variable (A) (B) (C)

Panel A: elasticity ε proxied by CDS level
LVG −0.948∗∗ (−2.74) −0.678 (−1.95) −2.362∗∗∗ (−5.00)
CDS −0.010∗∗∗ (−17.40) −0.010∗∗∗ (−16.60) −0.008∗∗∗ (−4.60)
LVG× CDS 0.009∗∗∗ (13.95) 0.009∗∗∗ (13.59) 0.006∗∗∗ (3.76)
VOLStock 4.588∗∗∗ (9.52) 4.679∗∗∗ (9.77) 2.452∗ (2.38)
LVG×VOLStock −2.589∗∗∗ (−4.15) −2.817∗∗∗ (−4.55) −0.536 (−0.40)
LOGSIZE 0.496∗∗∗ (6.87) 0.485∗∗∗ (6.72) −0.052 (−0.83)
DIV 0.019∗ (3.46) 0.018∗∗ (3.22) −0.009 (−0.75)
VOLCDS −3.100∗∗∗ (−23.73) −3.110∗∗∗ (−23.73) −4.481∗∗∗ (−14.11)
VOLS&P500 8.192∗∗∗ (10.28 8.094∗∗∗ (10.17) −3.889 (−0.62)
VIX −0.116∗∗∗ (−9.24) −0.115∗∗∗ (−9.18) 0.080 (1.55)
RATE(10) −0.294∗∗∗ (−8.01) −0.293∗∗∗ (−7.98) 1.293 (1.85)
RATE(10) − RATE(2) −0.151∗∗∗ (−3.79) −0.160∗∗∗ (−4.03) −1.811 (−1.42)
R2 0.449 0.452 0.522
Obs. (firm-years) 3,605 3,605 3,605

Panel B: elasticity ε estimated on a rolling basis
LVG −1.566∗∗∗ (−4.58) −1.480∗∗∗ (−4.23) −2.797∗∗∗ (−8.01)
CDS 0.000 (−0.95) −0.001 (−0.95) 0.001 (1.54)
LVG× CDS 0.001 (1.49) 0.001 (1.71) −0.001 (−1.40)
VOLStock −1.001∗ (−2.16) −0.987∗ (2.13) −2.947∗∗∗ (−4.33)
LVG×VOLStock 1.748∗∗ (3.08) 1.644∗∗ (2.88) 3.600∗∗∗ (4.81)
LOGSIZE 0.234∗∗ (3.26) 0.228∗∗ (3.16) −0.218∗∗∗ (−4.58)
DIV 0.009 (1.48) 0.007 (1.17) −0.006 (−0.84)
VOLCDS −0.083 (−0.68) −0.089 (−0.73) −0.907∗∗∗ (−4.24)
VOLS&P500 4.852∗∗∗ (6.00) 4.779∗∗∗ (5.90) −0.846 (−0.18)
VIX −0.075∗∗∗ (−5.92) −0.075∗∗∗ (−5.85) 0.002 (0.03)
RATE(10) 0.388∗∗∗ (−10.25) 0.389∗∗∗ (10.25) 0.598 (0.45)
RATE(10) − RATE(2) −0.207∗∗∗ (−5.09) −0.207∗∗∗ (−5.07) −2.385 (1.83)
R2 0.086 0.088 0.162
Obs. (firm-years) 3,605 3,605 3,605

Clustered SE Yes Yes Yes
Firm FE Yes Yes No
Year FE No No Yes
Cdt. events & ratings No Yes Yes
Business sectors No No Yes
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sectional determinants of the variance ratio υ with two alternative specifications of ε.

E.2 Cross-sectional determinants of market efficiency

In this section, we report additional results to investigate the cross-sectional determinants

of the MRS variance spread |q|, and the efficiency score w.
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Table 8. Robustness analysis: determinants of |q̂| in the cross-section of firms

This table reports estimates of the panel regression (7):

ln(|q̂
i,t
|) = β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock

i,t + β5LVGi,t ×VOLStock
i,t + β7VOLCDS

i,t

+ β8VOLS&P
t + β9VIXt + β10RATE(10)

t + β11(RATE(10)
t − RATE(2)

t ) + β12NOTCH DOWNi,t

+ β13NOTCH UPi,t +
∑8

j=1 γjRATING(j)
i,t +

∑11
j=1 δjSECTOR(j)

i +
∑

i Firm FEi +
∑

t Year FEt+ εi,t,

where q̂
i,t

are firm-year MRS variance spreads. t-statistics are calculated via robust standard errors clustered
by firm to correct for heteroskedasticity. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and
5% levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Variable (A) (B) (C) (D)

LVG −0.853∗∗ (−2.90) −0.842∗∗ (−2.87) −0.806∗∗ (−2.69) −0.971∗∗ (−2.73)
CDS 0.000 (0.07) 0.000 (0.00) 0.000 (0.11) 0.000 (0.01)
LVG× CDS −0.001 (−1.24) −0.001 (−1.19) −0.001 (−1.35) 0.000 (−0.16)
VOLStock −0.914∗ (−2.42) −0.914∗ (−2.42) −0.887∗ (−2.34) 0.375 (0.55)
LVG×VOLStock 0.751 (1.61) 0.740 (1.59) 0.725 (1.55) 0.551 (0.68)
LOGSIZE −0.888∗∗∗(−14.9) −0.888∗∗∗(−14.92) −0.897∗∗∗(−15.03) −0.080 (−1.49)
DIV 0.015 (1.75) 0.015 (1.80) 0.015 (1.75) −0.027 (−1.13)
VOLCDS 0.047 (0.53) 0.041 (0.47) 0.030 (0.33) −0.373∗∗ (−2.68)
VOLS&P500 −0.420 (−0.69) −0.439 (−0.72) −0.370 (−0.61) 0.744 (0.20)
VIX 0.004 (0.41) 0.004 (0.46) 0.003 (0.33) −0.003∗∗ (−0.04)
RATE(10) 0.276∗∗∗ (9.88) 0.278∗∗∗ (9.96) 0.275∗∗∗ (9.83) −0.049 (−0.04)
RATE(10)-RATE(2) 0.431∗∗∗ (13.96) 0.427∗∗∗ (13.78) 0.424∗∗∗ (13.64) 0.045 (0.04)
NOTCH DOWN 0.013 (0.27) 0.012 (0.25) 0.148∗ (1.68)
NOTCH UP 0.096 (1.73) 0.098 (1.77) 0.000 (0.00)
RATING AAA −0.042 (−0.10) 1.172 (1.68)
RATING AA −0.214 (−0.64) 0.848 (1.70)
RATING A −0.336 (−1.06) 0.614 (1.33)
RATING BBB −0.383 (−1.24) 0.320 (0.70)
RATING BB −0.365 (−1.21) 0.394 (0.85)
RATING B −0.453 (−1.42) 0.458 (0.88)
RATING CCC −0.190 (−0.48) 0.423 (0.70)
FINANCIALS 0.518∗∗ (2.86)
UTILITIES 0.244 (1.13)
CONS. NON-CYC. 0.241 (1.44)
REAL ESTATE −0.002 (−0.01)
CONS. CYC. 0.506∗∗∗ (3.81)
INDUSTRIALS 0.769∗∗∗ (5.40)
BASIC MAT. 0.551∗∗ (2.67)
TECHNOLOGY 0.598∗ (2.22)
HEALTHCARE 0.767∗∗ (3.29)
ENERGY 0.401∗ (2.31)

Clustered SE Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes No
Year fixed effects No No No Yes
R2 0.338 0.339 0.340 0.080
Obs. (firm-years) 3,604 3,604 3,604 3,604
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Table 9. Robustness analysis: determinants of ŵ in the cross-section of firms

This table reports estimates of the panel regression (7):

ŵ
i,t

= β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock
i,t + β5LVGi,t ×VOLStock

i,t + β7VOLCDS
i,t

+ β8VOLS&P
t + β9VIXt + β10RATE(10)

t + β11(RATE(10)
t − RATE(2)

t ) + β12NOTCH DOWNi,t

+ β13NOTCH UPi,t +
∑8

j=1 γjRATING(j)
i,t +

∑11
j=1 δjSECTOR(j)

i +
∑

i Firm FEi +
∑

t Year FEt+ εi,t,

where ŵi,t are firm-year W88 efficiency scores. t-statistics are calculated via robust standard errors clustered
by firm to correct for heteroskedasticity. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and
5% levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Variable (A) (B) (C) (D)

LVG 121.524∗∗∗ (14.76) 121.703∗∗∗ (14.72) 122.013∗∗∗ (14.56) 151.970∗∗∗ (19.11)
CDS −0.003 (−0.28) −0.002 (−0.18) 0.000 (−0.01) −0.029∗ (−2.49)
LVG× CDS 0.004 (0.35) 0.003 (0.26) 0.003 (0.27) 0.034∗ (2.47)
VOLStock −43.865∗∗∗(−4.48) −43.916∗∗∗(−4.49) −44.721∗∗∗(−4.60) −46.375∗∗∗(−4.24)
LVG×VOLStock −24.420 (−1.62) −23.843 (−1.58) −22.235 (−1.48) −44.420∗∗∗(−3.34)
LOGSIZE −0.146 (−0.10) −0.130 (−0.09) −0.198 (−0.14) 4.983∗∗∗ (5.84)
DIV −0.582∗ (−2.02) −0.582∗ (−2.01) −0.622∗ (−2.12) −0.167 (−0.60)
VOLCDS 46.297∗∗∗ (18.43) 46.391∗∗∗ (18.43) 46.644∗∗∗ (18.48) 60.031∗∗∗ (11.88)
VOLS&P500 −146.847∗∗∗(−9.87) −146.534∗∗∗(−9.84) −147.324∗∗∗(−9.89) 234.894∗∗∗ (4.15)
VIX 1.362∗∗∗ (6.01) 1.356∗∗∗ (5.97) 1.356∗∗∗ (5.96) −3.984∗∗∗(−3.71)
RATE(10) 1.964∗∗ (2.77) 1.947∗∗ (2.75) 2.011∗∗ (2.85) −28.563 (−1.41)
RATE(10)-RATE(2) −2.311∗∗ (−3.02) −2.306∗∗ (−3.01) −2.267∗∗ (−2.94) 27.615 (1.30)
NOTCH DOWN −0.687 (−0.59) −0.706 (−0.61) 0.231∗ (0.17)
NOTCH UP −0.618 (−0.48) −0.408 (−0.32) 0.246 (0.18)
RATING AAA −5.736 (−0.45) −21.301∗∗ (−3.02)
RATING AA −6.090 (−0.63) −16.544∗ (−2.47)
RATING A −1.919 (−0.21) −10.417 (−1.68)
RATING BBB −0.174 (−0.02) −5.055 (−0.82)
RATING BB −3.583 (−0.40) −5.123 (−0.79)
RATING B −3.206 (−0.35) −3.848 (−0.54)
RATING CCC −12.568 (−1.15) −9.210 (−0.95)
FINANCIALS −6.363∗∗ (−1.71)
UTILITIES 9.068 (1.81)
CONS. NON-CYC. −4.054 (−1.58)
REAL ESTATE −10.278∗∗ (−3.10)
CONS. CYC. −4.913∗ (−2.54)
INDUSTRIALS −8.919∗∗∗(−3.88)
BASIC MAT. −5.126∗ (−2.35)
TECHNOLOGY −1.313 (−0.42)
HEALTHCARE −7.248∗∗ (−3.26)
ENERGY −6.578∗ (−2.31)

Clustered SE Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes No
Year fixed effects No No No Yes
R2 0.270 0.270 0.272 0.641
Obs. (firm-years) 3,343 3,343 3,343 3,343
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Table 8 reports estimates of regression (7) with the MRS log-variance spread ln(|q̂|) as

response variable. Table 9 reports estimates of regression (7) with the W88 efficiency score

ŵ as response variable.

E.3 Robustness to MRS specification

This section discusses alternative specifications for the MRS orthogonality test. First,

we investigate different assumptions for the equity risk premium (p = 0.03, 0.05, and 0.07).

Second, we consider a more robust specification of the naive forecast P o
t than the baseline

implementation (C3). This alternative specification is based on the annual moving average

over the last five years of dividends, that is, 20 quarterly dividend amounts:

P o
t = 1

rt + p
· 1

5

20∑
i=1

Dt−i. (E15)

This smoother specification enables controlling for dividend volatility and produces a less

noisy naive forecast.

Table 10 reports estimates of regression (7) with the MRS log-variance spread statistic

as response variable. The reported results show that the estimate β̂1 remains statistically

significant and negative, confirming that the robust MRS statistic consistently decreases

along with firm leverage.

E.4 Robustness to perfect-foresight price implementation

This section explores the impact of an alternative specification of the perfect-foresight

price on the MRS orthogonality test. We use a robust version of the variance spread statistic

q
T
to avoid being overly dependent on a single value of the market price at the time horizon

T . More precisely, we first consider the realized distribution of the market price Pt over the

last year of our full sample period (2008-2020). Then we extract the n dates corresponding to

the n percentiles in this distribution, namely T1, · · · , Tn. We then calculate the n trajectories

12
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Table 10. Robustness analysis: sensitivity of |q̂| to the naive forecast specification

This table reports estimates of the panel regression (7):

ln(|q̂
i,t
|) = β1LVGi,t + β2CDSi,t + β3LVGi,t × CDSi,t + β4VOLStock

i,t + β5LVGi,t ×VOLStock
i,t + β7VOLCDS

i,t

+ β8VOLS&P
t + β9VIXt + β10RATE(10)

t + β11(RATE(10)
t − RATE(2)

t ) +
∑

i Firm FEi +
∑

t Year FEt+ εi,t,

where q̂i,t are firm-year MRS variance spreads. t-statistics are calculated via robust standard errors
clustered by firm to correct for heteroskedasticity. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%,
1%, and 5% levels, respectively. The sample period is 2008:01 to 2020:12. Data source: Thomson Reuters.

Variable (A) p = 0.03 (B) p = 0.05 (C) p = 0.07

Panel A: naive forecast P o
t =

4∑
i=1

Dt−i/(rt + p)

LVG −0.679∗ (−2.31) −0.853∗∗ (−2.90) −1.012∗∗∗ (−3.57)
CDS 0.000 (−0.14) 0.000 (0.07) 0.000 (−0.39)
LVG× CDS −0.001 (−1.06) −0.001 (−1.24) 0.000 (−0.96)
VOLStock −0.539 (−1.40) −0.914∗ (−2.42) −1.185∗∗ (−3.22)
LVG×VOLStock 0.483 (1.03) 0.751 (1.61) 0.758 (1.68)
LOGSIZE −0.829∗∗∗ (−14.02) −0.888∗∗∗ (−14.9) −0.919∗∗∗ (−16.37)
DIV 0.021∗∗ (2.85) 0.015 (1.75) 0.016 (1.75)
VOLCDS 0.108 (1.21) 0.047 (0.53) −0.044 (−0.52)
VOLS&P500 −0.175 (−0.28) −0.420 (−0.69) −0.400 (−0.68)
VIX 0.001 (0.13) 0.004 (0.41) 0.009 (1.00)
RATE(10) 0.308∗∗∗ (10.64) 0.276∗∗∗ (9.88) 0.250∗∗∗ (9.11)
RATE(10)-RATE(2) 0.448∗∗∗ (14.18) 0.431∗∗∗ (13.96) 0.418∗∗∗ (13.85)
Clustered SE Yes Yes Yes
Firm fixed effects Yes Yes Yes
Year fixed effects No No No
R2 0.335 0.338 0.341
Obs. (firm-years) 3,602 3,604 3,602

Panel B: naive forecast P o
t = 1

5

20∑
i=1

Dt−i/(rt + p)

LVG −1.503∗∗∗ (−2.90) −1.418∗∗∗ (−4.68) −1.281∗∗∗ (−4.37)
CDS 0.000 (0.64) 0.000 (0.43) 0.000 (−0.33)
LVG× CDS −0.001∗ (−2.29) −0.001∗ (−2.36) −0.001 (−1.90)
VOLStock −1.469∗∗∗ (−3.65) −1.476∗∗∗ (−3.90) −1.523∗∗∗ (−4.07)
LVG×VOLStock 2.150∗∗∗ (4.55) 1.822∗∗∗ (3.92) 1.707∗∗∗ (3.69)
LOGSIZE −0.869∗∗∗ (−14.21) −0.925∗∗∗ (−14.88) −0.951∗∗∗ (−16.58)
DIV 0.013 (1.60) 0.015∗ (2.00) 0.018 (1.84)
VOLCDS 0.043 (0.46) −0.028 (−0.32) 0.036 (−0.42)
VOLS&P500 −0.280 (−0.44) −0.397 (−0.65) −0.626 (−1.07)
VIX 0.008 (0.79) 0.011 (1.14) 0.015 (1.66)
RATE(10) 0.254∗∗∗ (8.62) 0.240∗∗∗ (8.47) 0.239∗∗∗ (8.72)
RATE(10)-RATE(2) 0.407∗∗∗ (12.40) 0.401∗∗∗ (12.80) 0.388∗∗∗ (12.88)
Clustered SE Yes Yes Yes
Firm fixed effects Yes Yes Yes
Year fixed effects No No No
R2 0.305 0.328 0.343
Obs. (firm-years) 3,602 3,603 3,603
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of the perfect-foresight price P ∗t→Ti originating from P
T1
, · · · , P

Tn
. The robust MRS variance

spread statistic is then given by the following average:

q := 1
n

n∑
i=1

q
Ti

= 1
n

n∑
i=1

 1
Ti

Ti∑
t=1

q
t,Ti

 .
To check the robustness of the orthogonality test results reported in Section 4, we inves-

tigate the determinants of the robust MRS statistic q in the cross-section of firms. For that

purpose, for every firm i and every year t (2008 6 t 6 2020), we run the orthogonality test

with a robust variance spread q
i,t

implemented as in Equation (E16) and n = 10 trajectories

for the perfect-foresight price P ∗t→Ti(1 6 i 6 10). Then we collect the set of statistics |q̂
i,t
|

similarly to the methodology employed in Table 8. Finally, we estimate the panel regression

(7) with firm- and year-fixed effects. We expect the estimate β̂1 to be statistically significant

and negative to confirm the findings of Section 4.

Table 11 reports estimates of regression (7) with a robust variance spread statistic q

implemented as in Equation (E16). We also report three different assumptions for the

equity risk premium (p = 0.03, 0.05, and 0.07). The reported results show that estimate β̂1

is statistically significant and negative, confirming that the robust MRS statistic consistently

decreases along with firm leverage.
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Table 11. Robust orthogonality tests at the firm level

This table reports estimates of the following panel regression with firm and year fixed effects:

ln(|q̂
i,t
|) =β1LVG

i,t
+ β2CDS

i,t
+ β3LVG

i,t
CDS

i,t
+ β4LOGSIZE

i,t
+ β5DIV

i,t
+ β6VOL

i,t
+
∑
i,t

FE
i,t

+ ε
i,t
,

where q̂i,t is the robust MRS statistic given by Equation (E16) and estimated for every firm i and every year
t (2008 6 t 6 2020) in the sample. n = 10 trajectories of the perfect-foresight price P ∗t→Tj

(1 6 j 6 10) have
been used for each firm-year sample. t-statistics in parentheses are calculated via standard errors clustered
by firm to correct for timewise heteroskedasticity and serial correlation. ∗∗∗, ∗∗ and ∗ denote statistical
significance at the 0.1%, 1%, and 5% levels, respectively. Data source: Thomson Reuters.

Naive forecast P o
t

P o
t =

∑4
i=1 Dt−i/(rt + p) P o

t = 1
5
∑20

i=1 Dt−i/(rt + p)
Variable p = 0.03 p = 0.05 p = 0.07 p = 0.03 p = 0.05 p = 0.07
LVG −0.91∗ −0.84∗ −0.74 −0.98∗ −0.85∗ −0.73∗

(−2.18) (−2.05) (−1.84) (−2.46) (−2.22) (−2.01)
CDS −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

(−0.84) (−1.20) (−1.36) (−0.61) (−0.78) (−1.26)
LVG× CDS 0.00 0.00 0.00 0.00 0.00 0.00

(0.88) (1.18) (1.20) (0.47) (0.13) (0.57)
LOGSIZE −0.68∗∗∗ −0.77∗∗∗ −0.78∗∗∗ −0.68∗∗∗ −0.72∗∗∗ −0.74∗∗∗

(−6.10) (−7.30) (−7.51) (−5.84) (−6.32) (−5.81)
DIV 0.03∗∗ 0.02 0.02 0.02∗ 0.02∗ 0.02∗

(2.70) (1.64) (1.26) (1.93) (2.40) (2.18)
VOL −0.01 −0.02 −0.03∗ −0.01 −0.02 −0.03∗

(−0.68) (−1.17) (−2.00) (−0.63) (−1.48) (−2.04)
Clustered std. errors Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
R2 0.047 0.058 0.061 0.036 0.050 0.058
Obs. (firm-years) 2, 975 2, 977 2, 976 2, 974 2, 976 2, 974
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